
Lazy Reachability Checking for Timed
Automata with Discrete Variables

Tamás Tóth? and István Majzik

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

{totht,majzik}@mit.bme.hu

Abstract. Systems and software with time dependent behavior are of-
ten formally specified using timed automata. For practical real-time sys-
tems, these specifications typically contain discrete data variables with
nontrivial data flow besides real-valued clock variables. In this paper, we
propose a lazy abstraction method for the location reachability problem
of timed automata that can be used to efficiently control the visibility
of discrete variables occurring in such specifications, this way alleviat-
ing state space explosion. The proposed abstraction refinement strategy
is based on interpolation for variable assignments and symbolic back-
ward search. We combine in a single algorithm our abstraction method
with known efficient lazy abstraction algorithms for the handling of clock
variables. Our experiments show that the proposed method performs fa-
vorably when compared to other lazy methods, and is suitable to signif-
icantly reduce the number of states generated during state space explo-
ration.

Keywords: timed automata, model checking, reachability checking, lazy ab-
straction, visible variables abstraction, zone abstraction, interpolation

1 Introduction

Timed automata [1] is a widely used formalism for the modeling and verifica-
tion of systems and software with time-dependent behavior. In timed automata
models, erroneous or unsafe behavior (that is to be avoided during operation) is
often modeled by error locations. The location reachability problem deals with
the question whether a given error location is reachable from an initial state
along the transitions of the automaton.

As timed automata contain real-valued clock variables, to ensure performance
and termination, model checkers for timed automata apply abstraction over clock
variables. The standard solution involves performing a forward exploration in
the zone abstract domain [7], combined with extrapolation [3] parametrized by
bounds appearing in guards, extracted by static analysis [2]. Other zone-based

? This work was partially supported by Gedeon Richter’s Talentum Foundation
(Gyömrői út 19-21, 1103 Budapest, Hungary).

methods propagate bounds lazily for all transitions [10] or along an infeasible
path [9], and perform efficient inclusion checking with respect to a non-convex
abstraction induced by the bounds [11]. Alternatively, some methods perform
lazy abstraction directly over the zone abstract domain [17, 18]. However, in
the context of timed automata, methods rarely address the problem of abstrac-
tion for discrete data variables that often appear in specifications for practical
real-time systems, or do so by applying a fully SMT based approach, relying
on the efficiency of underlying decision procedures for the abstraction of both
continuous and discrete variables.

In our work, we address the location reachability problem of timed automata
with discrete variables by proposing an abstraction method that can be used
to lazily control the visibility of discrete variables occurring in such specifica-
tions. If the abstraction is too coarse to disable an infeasible transition, then we
propagate the pre-image of the transition backward using weakest precondition
computation, and use interpolation (defined for variable assignments) to extract
a set of variables that are sufficient to block the transition from the abstract
state. We use interpolation in a similar fashion to attempt to enforce coverage
of a newly discovered state with an already visited state when possible, this way
effectively pruning the search space. Our method does not rely on an interpo-
lating SMT solver, and can be freely combined with zone-based forward search
(eager or lazy) methods for efficient handling of clock variables.

We evaluated the proposed abstraction method by combining it with lazy
refinement techniques for continuous variables. Results show that in terms of
execution time our method performs similarly to lazy methods without abstrac-
tion of discrete variables, but generates a smaller (in cases significantly smaller)
state space.

Comparison to related work. Lazy abstraction [8], a form of counterexample-
guided abstraction refinement [6], is an approach widely used for reachability
checking, and in particular for model checking software. It consists of building
an abstract reachability graph on-the fly, representing an abstraction of the
system, and refining a part of the tree in case a spurious counterexample is
found. For timed automata, a lazy abstraction approach based on non-convex
LU -abstraction and on-the-fly propagation of bounds has been proposed [9].
A significant difference of this algorithm compared to usual lazy abstraction
algorithms is that it builds an abstract reachability graph that preserves exact
reachability information (a so-called adaptive simulation graph or ASG). As a
consequence it is able to apply refinement as soon as the abstraction admits a
transition disabled in the concrete system. Similar abstraction techniques based
on building an ASG include difference bound constraint abstraction [18] and
the zone interpolation-based technique of [17]. In our work, we follow the same
approach, but for discrete variables instead of clock variables. The proposed
abstraction method is orthogonal to the aforementioned techniques and can be
freely combined with any of them.

Symbolic handling of integer variables for timed automata is often supported
by unbounded fully symbolic SMT-based approaches. Symbolic backward search
techniques like [5] and [15] are based on the computation and satisfiability check-
ing of pre-images. In [12], reachability checking for timed automata is addressed
by solving Horn clauses. In the IC3-based technique of [14], the problem of dis-
crete variables is not addressed directly, but the possibility of generalization over
discrete variables is (to some extent) inherent to the technique. In [13], also based
on IC3, generalization of counterexamples to induction is addressed for both dis-
crete and clock variables by zone-based pre-image computation. In our work, we
propose an abstraction method over discrete variables that is completely theory
agnostic, and does not rely on an SMT-solver.

Interpolation for variable assignments was first described in [4]. There, the
interpolant is computed for a prefix and a suffix of a constraint sequence, and
an inductive sequence of interpolants is computed by propagating interpolants
forward using the abstract post-image operator. In our work, we define interpo-
lation for a variable assignment and a formula, and compute inductive sequences
of interpolants by propagating interpolants backward using weakest precondition
computation. In our context, this enables us to consider a suffix of an infeasible
path, instead of the whole path, for computing inductive sequences of inter-
polants.

Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we define the notations used throughout the paper, and present the
theoretical background of our work. In Section 3 we propose a lazy reachability
checking algorithm based on the visibility of discrete variables for timed au-
tomata. Section 4 describes experiments performed on the proposed algorithm.
Finally, conclusions are given in Section 5.

2 Background and Notations

Let V be a set of data variables over Z, and X a set of clock variables over R≥0. A
data constraint over V is a well-formed formula ϕ ∈ DC (V) built from variables
in V and arbitrary function and predicate symbols interpreted over Z. A clock
constraint over X is a formula ϕ ∈ CC (X) that is a conjunction of atoms of the
form x ≺ c and xi − xj ≺ c where x, xi, xj ∈ X, c ∈ Z and ≺ ∈ {<,≤}. A data
update over V is an assignment u ∈ DU (V) of the form v := t where v ∈ V and
t is a term built from variables in V and function symbols interpreted over Z.
A clock update (clock reset) over X is an assignment u ∈ CU (X) of the form
x := n where x ∈ X and n ∈ Z. The set of variables appearing in a formula ϕ is
denoted by vars(ϕ).

A valuation over a finite set of variables is a function that maps variables to
their respective domains. A data valuation is a valuation over a set of data vari-
ables V , that is, a function ν : V → Z. Similarly, a clock valuation is a valuation
over a set of clock variables X, that is, a function η : X → R≥0. We will denote
by Eval(Q) the set of valuations over a set of variables Q.

Throughout the paper we will allow partial functions as valuations. We ex-
tend valuations to range over terms and formulas the usual way, with the pos-
sibility that the value of a term is undefined over a valuation. We will denote
by σ |= ϕ iff formula ϕ is satisfied under valuation σ. Note that in the context
of partial valuations σ |= ¬ϕ is a strictly stronger statement than σ 6|= ϕ (e.g.
{x← [1} 6|= y = 1 but it is not the case that {x←[1} |= y 6= 1).

We will denote by def(σ) the domain of definition of a valuation, that is,
def(σ) = {q | σ(q) 6= ⊥}, and by form(σ) the formula characterizing the valua-
tion, that is, form(σ) =

∧
q∈def(σ) q = σ(q). We denote by σ v σ′ iff σ(q) = σ′(q)

for all q ∈ def(σ′). Note that v is a partial order, as expected. Moreover if σ v σ′
and σ′ |= ϕ then σ |= ϕ, and σ v σ′ iff σ |= form(σ′).

We will denote by ⊗ the partial function over valuations that is defined as

(σ ⊗ σ′)(q) =

σ(q) if q ∈ def(σ)

σ′(q) if q ∈ def(σ′)

⊥ otherwise

if σ(q) = σ′(q) for all q ∈ def(σ) ∩ def(σ′), and is undefined otherwise.
Given a valuation σ ∈ Eval(Q) and an assignment q := t, we denote by

σ{q := t} the valuation σ′ ∈ Eval(Q ∪ {q}) such that σ′(q) = σ(t) and σ′(q′) = σ(q′)
for all q′ 6= q. For a sequence of updates µ and a set of updates U we define

σ{µ}U =

σ if µ = ε

σ{u}{µ′}U if µ = u · µ′ and u ∈ U
σ{µ′}U if µ = u · µ′ and u /∈ U

2.1 Timed automata

In the area of real-time verification, timed automata [1] is the most prominent
formalism. To make the specification of practical systems more convenient, the
traditional formalism is often extended with various syntactic and semantic con-
structs, in particular with the handling of discrete variables. In the following, we
describe such an extension.

Definition 1 (Syntax). Syntactically, a timed automaton with discrete vari-
ables is a tuple A = (L, V,X, T, `0) where

– L is a finite set of locations,
– V is a finite set of data variables of integer type,
– X is a finite set of clock variables,
– T ⊆ L× P(C)× U∗ × L is a finite set of transitions with sets C and U

defined as C = DC (V) ∪ CC (X) and U = DU (V) ∪ CU (X), where for a
transition (`,G, µ, `′), the set G ⊆ C is a set of guards and µ ∈ U∗ is a
sequence of updates,

– `0 ∈ L is the initial location.

Throughout the paper, we will refer to a timed automaton with discrete
variables simply as a timed automaton.

A state of A is a triple (`, ν, η) where ` ∈ L, ν ∈ Eval(V) and η ∈ Eval(X).
We will denote by ν0 the unique total function ν0 : V → {0} and by η0 the unique
total function η0 : X → {0}.

Definition 2 (Semantics). The operational semantics of a timed automaton
is given by a labeled transition system with initial state (`0, ν0, η0) and two kinds
of transitions:

– Delay: (`, ν, η)
δ−→ (`, ν, η′) for some real number δ ≥ 0 where η′ = η+ δ with

(η + δ)(x) = η(x) + δ for all x ∈ X;

– Action: (`, ν, η)
t−→ (`′, ν′, η′) for some transition t = (`,G, µ, `′) where we

have ν′ = dpostt(ν) and η′ = cpostt(η) with partial functions

dpostt(ν) =

{
⊥ if ν |= ¬g for some g ∈ G ∩DC (V)

ν{µ}DU (V) otherwise

cpostt(η) =

{
⊥ if η |= ¬g for some g ∈ G ∩ CC (X)

η{µ}CU (X) otherwise

Here, dpostt(ν) denotes the strongest (discrete) postcondition of ν with re-
spect to transition t. Note that for any t ∈ T , function dpostt is monotonic with
respect to v, as expected. Moreover, we define the weakest (discrete) precondi-
tion wpt(ϕ) as the formula such that ν |= wpt(ϕ) iff dpostt(ν) |= ϕ for all ν and
ϕ, with respect to t.

A run of a timed automaton is a sequence of states from the initial state
along the transition relation

(`0, ν0, η0)
α1−→ (`1, ν1, η1)

α2−→ . . .
αn−−→ (`n, νn, ηn)

where αi ∈ T ∪ R≥0 for all 0 ≤ i ≤ n. A location ` ∈ L is reachable iff there
exists a run such that `n = `.

2.2 Symbolic semantics

As the concrete semantics of a timed automaton is infinite due to real valued
clock variables, model checkers are often based on a symbolic semantics defined
in terms of zones. A zone is the solution set of a clock constraint ϕ ∈ CC (X).
For sets of clock valuations Z and Z ′, we will denote by Z v Z ′ iff Z ⊆ Z ′.
Moreover, if Z is a zone and t ∈ T , then

– ⊥ = ∅,
– Z0 = {η | η = η0 + δ for some δ ≥ 0} and

– zpostt(Z) =
{
η′ | (·, ·, η)

t−→ s
δ−→ (·, ·, η′) for some η ∈ Z and δ ≥ 0

}

are also zones. Here, zpostt(Z) represents the strongest postcondition of Z
with respect to a transition t of a timed automaton. As defined above, function
zpostt is monotonic with respect to v for any t ∈ T .

Definition 3 (Symbolic semantics). The symbolic semantics of a timed au-
tomaton is given by a labeled transition system with states of the form (`, ν, Z),
with initial state (`0, ν0, Z0), and for t = (`, ·, ·, `′) with transitions of the form

(`, ν, Z)
t

=⇒ (`′, dpostt(ν), zpostt(Z)).

We will say that a transition t is enabled from a symbolic state (`, ν, Z)

iff (`, ν, Z)
t

=⇒ (`′, ν′, Z ′) for some `′, ν′ and Z ′ 6= ⊥, otherwise it is disabled.
Note that a transition t = (`, ·, ·, ·) is disabled from a symbolic state (`, ν, Z) iff
dpostt(ν) = ⊥ or zpostt(Z) = ⊥.

Definition 4 (Symbolic run). A symbolic run of a timed automaton is a se-

quence (`0, ν0, Z0)
t1=⇒ (`1, ν1, Z1)

t2=⇒ . . .
tn=⇒ (`n, νn, Zn) where Zn 6= ⊥.

Proposition 1. For a timed automaton, a location ` ∈ L is reachable iff there
exists a symbolic run with `n = `.

3 Algorithm for Lazy Reachability Checking

In this section, we present our algorithm for lazy reachability checking of timed
automata with discrete variables. During the description, we will focus on the
handling of discrete variables, but formulate the algorithm so that it is straight-
forward to combine the method with a corresponding (eager or lazy) method for
the handling of clock variables.

3.1 Adaptive simulation graph

The central structure of the algorithm is an abstract simulation graph. The
presented formulation is a generalization of the definition presented in [17] for
the handling of discrete variables and the possibility of using various methods
for the handling of clock variables.

Definition 5 (Unwinding). An unwinding of a timed automaton (L, V,X, T, `0)
is a tuple U = (N,E, n0,Mn,Me, .) where

– (N,E) is a directed tree rooted at node n0 ∈ N ,
– Mn : N → L is the node labeling,
– Me : E → T is the edge labeling and
– . ⊆ N ×N is the (functional) covering relation.

For an unwinding we require that the following properties hold:

– Mn(n0) = `0,

– for each edge (n, n′) ∈ E the transition Me(n, n
′) = (`, ·, ·, `′) is such that

Mn(n) = ` and Mn(n′) = `′,
– for all nodes n and n′ such that n . n′ it holds that Mn(n) = Mn(n′).

The purpose of the covering relation . is to mark that a node of the search
tree has been pruned due to an other node that admits all runs possible from
the covered node. We define the following shorthand notations for convenience:
`n = Mn(n) and tn,n′ = Me(n, n

′).

Definition 6 (Adaptive simulation graph). An adaptive simulation graph
(ASG) for a timed automaton A is a tuple G = (U,ψν , ψν̂ , ψZ , ψẐ) where

– U is an unwinding of A,
– ψν , ψν̂ : N → Eval(V) are labelings of nodes by data valuations and
– ψZ , ψẐ : N → P(Eval(X)) are labelings of nodes by sets of clock valuations.

We will use the following shorthand notations: νn = ψν(n), ν̂n = ψν̂(n),
Zn = ψZ(n) and Ẑn = ψẐ(n). While building the ASG we will ensure that
(`n, νn, Zn) represents an exact set of reachable states for n (thus with Zn being
a zone), and that νn v ν̂n and Zn v Ẑn.

A node n is expanded iff for all transitions t ∈ T such that t = (`, ·, ·, ·) and
`n = `, either t is disabled from (`n, νn, Zn), or n has a successor for t. A node
n is covered iff n . n′ for some node n′. It is excluded iff it is covered or it has
an excluded parent. A node is complete iff it is either expanded or excluded. A
node n is `-safe iff `n 6= `. For an ASG to be useful for reachability checking, we
have to introduce restrictions on the labeling.

Definition 7 (Well-labeled node). A node n of an ASG G for a timed au-
tomaton A is well-labeled iff the following conditions hold:

– (initiation) if n = n0, then
(a) νn = ν0 and Zn = Z0

(b) ν0 v ν̂n and Z0 v Ẑn
– (consecution) if n 6= n0, then for its parent m and the transition t = tm,n

(a) νn = dpostt(νm) and Zn = zpostt(Zm)
(b) dpostt(ν̂m) v ν̂n and zpostt(Ẑm) v Ẑn

– (coverage) if n . n′ for some node n′, then ν̂n v ν̂n′ and Ẑn v Ẑn′ and n′ is
not excluded

– (simulation) if n is expanded, then any transition disabled from (`n, νn, Zn)
is also disabled from (`n, ν̂n, Ẑn).

The above definitions for nodes can be extended to ASGs. An ASG is com-
plete, `-safe or well-labeled iff all its nodes are complete, `-safe or well-labeled,
respectively. The main challenge for the construction of a well-labeled ASG as
defined above is how the labelings ψν̂ and ψẐ are computed. A well-labeled ASG
preserves reachability information, which is expressed by the following proposi-
tion.

Proposition 2. Let G be a complete, well-labeled ASG for a timed automaton

A. Then A has a symbolic run (`0, ν0, Z0)
t1=⇒ (`1, ν1, Z1)

t2=⇒ . . .
tk=⇒ (`k, νk, Zk)

iff G has a non-excluded node n such that `k = `n.

Proof. The right-to-left direction is a consequence of the subsequent Lemma 1.
and the converse follows from Lemma 2. ut

Lemma 1. Let G be a well-labeled ASG for a timed automaton A. If G has a

node n then A has a symbolic run (`0, ν0, Z0)
t1=⇒ (`1, ν1, Z1)

t2=⇒ . . .
tk=⇒ (`k, νk, Zk)

such that `k = `n.

Proof. The statement is a direct consequence of conditions initiation(a) and
consecution(a). ut

Lemma 2. Let G be a complete, well-labeled ASG for a timed automaton A. If

A has a symbolic run (`0, ν0, Z0)
t1=⇒ (`1, ν1, Z1)

t2=⇒ . . .
tk=⇒ (`k, νk, Zk) then G has

a non-excluded node n such that `k = `n and νk v ν̂n and Zk v Ẑn.

Proof. We prove the statement by induction on the length k of the symbolic
run. If k = 0, then ` = `0 and ν = ν0 and Z = Z0, thus n0 is a suitable witness
by condition initiation(b). Suppose the statement holds for runs of length at
most k− 1. Hence there exists a non-excluded node m such that `k−1 = `m and
νk−1 v ν̂m and Zk−1 v Ẑm.

Clearly the transition tk is not disabled from (`m, ν̂m, Ẑm), as then by condi-
tion simulation it would be also disabled from (`k−1, νk−1, Zk−1), which contra-
dicts our assumption. As m is complete and not excluded, it is expanded, and
thus has a successor n for transition tk with `n = `k. By condition consecution(b),
we have dposttk(ν̂m) v ν̂n. As νk−1 v ν̂m and dpostt is monotonic w.r.t. v , we

have νk v ν̂n. We can obtain Zk v Ẑn symmetrically.
Thus if n is not covered, then it is a suitable witness for the statement.

Otherwise there exists a node n′ such that n . n′. By condition coverage, we
know that ν̂n v ν̂n′ and Ẑn v Ẑn′ and n′ is not excluded, thus n′ is a suitable
witness. ut

3.2 Reachability algorithm

The pseudocode of the algorithm is shown in Algorithm 1. The algorithm gets
as input a timed automaton A and a distinguished error location `e ∈ L. The
goal of the algorithm is to decide whether `e is reachable for A. To this end
the algorithm gradually builds an ASG for A and continually maintains its well-
labeledness. Upon termination, it either witnesses reachability of `e by a node n
such that `n = `e, which by Lemma 1 corresponds to a symbolic run of A to `e,
or produces a closed, well-labeled, `e-safe ASG that proves unreachability of `e
by Lemma 2.

The main data structures of the algorithm are the ASG G and sets passed
and waiting . The set passed is used to store nodes that are expanded and

Algorithm 1 Reachability algorithm for timed automata with integer variables

1: ensure ρ = safe iff `e is unreachable for A
2: function explore(A, `e) returns ρ ∈ {safe,unsafe}
3: let n0 be a node with `n0 = `0, νn0 = ν0, ν̂n0 = > and Zn0 = Z0

4: N ← {n0}, E ← ∅, .← ∅
5: let G be an ASG for A over N , E and .
6:
7: passed ← ∅, waiting ← {n0}
8: while n ∈ waiting for some n do
9: waiting ← waiting \ {n}

10: if `n = `e then
11: return unsafe
12: else
13: close(n)
14: if n is not covered then
15: expand(n)

16: return safe

17: procedure close(n)
18: for all n′ ∈ passed such that `n = `n′ and νn v ν̂n′ and Zn v Ẑn′ do
19: refine(n, form(ν̂n′))
20: zcover(n, n′)
21: if ν̂n v ν̂n′ and Ẑn v Ẑn′ then
22: .← . ∪ {(n, n′)}
23: return

24: ensure n is expanded
25: procedure expand(n)
26: for all t ∈ T such that t = (`, ·, ·, `′) with ` = `n do
27: let ν′ = dpostt(νn)
28: let Z′ = zpostt(Zn)
29: if ν′ = ⊥ then
30: refine(n,wpt(⊥))
31: else if Z′ = ⊥ then
32: zblock(n, t)
33: else
34: let n′ be a new node with `n′ = `′, νn′ = ν′, Zn′ = Z′, ν̂n′ = >, Ẑn′ = >
35: let (n, n′) be a new edge with tn,n′ = t
36: N ← N ∪ {n′}, E ← E ∪ {(n, n′)}
37: waiting ← waiting ∪ {n′}
38: passed ← passed ∪ {n}

39: require νn |= ϕ
40: ensure ν̂n |= ϕ
41: procedure refine(n, ϕ)

42: require Zn v Ẑn′

43: ensure Ẑn v old(Ẑn′)
44: procedure zcover(n, n′)

45: require zpostt(Z) = ⊥
46: ensure zpostt(Ẑ) = ⊥
47: procedure zblock(n, t)

waiting stores nodes that are incomplete. The algorithm consists of subproce-
dures close, expand and refine, and of procedures zcover and zblock. Pro-
cedure zcover and zblock serve for abstraction refinement over clock variables.
These procedures can be soundly implemented in various ways [3, 9–11, 17, 18],
and we assume such an implementation. Procedure close attempts to cover a
node by some other node. Procedure expand expands a node by creating the
successors of a node for all non-blocked transitions for the given location. Pro-
cedure refine (see in Section 3.3) can be used to ensure for a node n and some
formula ϕ that if νn |= ϕ then ν̂n |= ϕ as well. Both close and expand main-
tain well-labeledness by calls to refine. In particular, close calls to refine
in order to enforce condition coverage, and expand calls to refine to establish
condition simulation.

The algorithm consists of a single loop in line 8 that employs the following
strategy. The loop consumes nodes from waiting one by one. If waiting becomes
empty, then A is deemed safe. Otherwise, a node n is removed from waiting . If
the node represents an error location, then A is deemed unsafe. Otherwise, in
order to avoid unnecessary expansion of the node, the algorithm tries to cover
it by a call to close. If there are no suitable candidates for coverage, then the
algorithm establishes completeness of the node by expanding it using expand,
which puts it in passed and puts all its successors in waiting .

We show that explore is correct with respect to the annotations (proce-
dure contracts) in Algorithm 1. As, given a suitable refinement method for clock
variables, termination of the algorithm is trivial, we focus on partial correctness.

Proposition 3. Procedure explore is partially correct: if explore(A, `e) ter-
minates, then the result is safe iff `e is unreachable for A.

Proof (sketch). Let covered = {n ∈ N | n is covered}. It is easy to verify that
the algorithm maintains the following invariants:

– N = passed ∪ waiting ∪ covered ,
– passed is a set of non-excluded, expanded, `e-safe nodes,
– waiting is a set of non-excluded, non-expanded nodes,
– covered is a set of covered, non-expanded, `e-safe nodes.

It is easy to see that under the above assumptions sets passed , waiting and
covered form a partition of N . Assuming that G is well-labeled, partial correct-
ness of the algorithm is then a direct consequence. At line 11 a node is encoun-
tered that is not `e-safe, thus by Lemma 1 there is a symbolic run of A to `e.
Conversely, at line 16 the set waiting is empty, so G is complete and `e-safe, and
as a consequence of Lemma 2 the location `e is indeed unreachable for A.

What remains to show is that the algorithm maintains well-labeledness. We
assume that procedures zcover and zblock and procedure refine maintain
well-labeledness (this later statement we prove to hold in Section 3.3). Initially
node n0 is well-labeled as it satisfies initiation. Procedure close trivially main-
tains well-labeledness, as it just possibly adds a covering edge for two nodes such

that condition coverage is not violated. For procedure expand, if a given tran-
sition t is enabled, then a node is created that satisfies consecution. Otherwise
the corresponding refinement procedure is called, ensuring that simulation holds
for the given transition. In particular, if t is blocked due to dpostt(νn) = ⊥, we
have νn |= wpt(⊥), and thus can call refine to update ν̂n so that ν̂n |= wpt(⊥),
ensuring dpostt(ν̂n) |= ⊥ and effectively disabling t from (·, ν̂n, ·). ut

3.3 Abstraction refinement

To maintain well-labeledness, the algorithm relies on procedure refine that
performs abstraction refinement by safely adjusting abstract data valuations
labeling nodes of the ASG. The pseudocode of the refinement algorithm is shown
in Algorithm 2.

Algorithm 2 Refinement of visible variables

1: require νn |= ϕ
2: ensure ν̂n |= ϕ
3: procedure refine(n, ϕ)
4: if ν̂n |= ϕ then
5: return
6: else
7: let νI = interpolate(νn, ϕ)
8: for all m such that m . n and ν̂m 6v νI do
9: .← . \ (m,n)

10: waiting ← waiting ∪ {m}
11: if (m,n) ∈ E for some m then
12: let t = tm,n
13: refine(m,wpt(form(νI)))

14: ν̂n ← ν̂n ⊗ νI
15:
16: require νA |= ϕB
17: ensure νA v νI
18: ensure νI |= ϕB
19: ensure def(νI) ⊆ def(νA) ∩ vars(ϕB)
20: function interpolate(νA, ϕB) returns νI
21: νI ← νA|vars(ϕB)

22: let Q = def(νA) ∩ vars(ϕB)
23: for all v ∈ Q do
24: if νI |def(νI)\{v} |= ϕB then
25: νI ← νI |def(νI)\{v}
26: return νI

Informally, refine works as follows. Given a node n and a formula ϕ such
that νn |= ϕ holds, a weakening νI of νn is computed such that νI |= ϕ by calling
to procedure interpolate, which simply removes variables from the domain of

definition that are not necessary for satisfying the formula. Then all covering
edges are dropped that would violate condition coverage after strengthening. To
maintain condition consecution(b), procedure refine is then recursively called
for the predecessor m of n. The computed interpolant is then used to strengthen
the current labeling by including variables occurring in the interpolant in the
current abstraction. We show that refine maintains well-labeledness and is
correct with respect to the annotations in Algorithm 2.

Proposition 4. Procedure refine is totally correct: if νn |= ϕ, then refine(n, ϕ)
terminates and ensures ν̂n |= ϕ. Moreover, it maintains well-labeledness.

Proof. Termination of the procedure is trivial, so we focus on partial correctness
and the preservation of well-labeledness.

Function interpolate has no side effect, it thus trivially maintains well-
labeledness. Moreover, it is easy to see that it satisfies its contract, as it simply
drops variables not necessary to ensure satisfiability of ϕB from the domain of
definition of νA.

In procedure refine, if ν̂n |= ϕ then no refinement is needed, and the con-
tract is trivially satisfied. Otherwise, the interpolant νI is computed by function
interpolate. As νn v ν̂n by well-labeledness and νn v νI by the precondition,
we know that ν̂n ⊗ νI , and thus the new value of ν̂n, is defined. As ν̂n ⊗ νI v νI
and νI |= ϕ, we have ν̂n ⊗ νI |= ϕ, which ensures the postcondition.

Next we show that well-labeledness is maintained. Condition simulation is
trivially ensured, as if ν̂n |= ¬g for some guard g, then ν̂n ⊗ νI |= ¬g as well.
After the loop we have ν̂m v νI for all m such that m . n. Moreover, ν̂m v ν̂n
by well-labeledness. Thus ν̂m v ν̂n ⊗ νI , which ensures condition coverage. If
n has no parent then condition initiation(b) is trivially maintained. Otherwise
we have νn v νI , thus dpostt(νm) |= form(νI), from which νm |= wpt(form(νI))
follows. Hence refine can be called to ensure ν̂m |= wpt(form(νI)), and thus
dpostt(ν̂m) v νI . Moreover, dpostt(ν̂m) v ν̂n by well-labeledness. It follows that
dpostt(ν̂m) v ν̂n ⊗ νI , which ensures condition consecution(b). ut

4 Evaluation

We implemented a prototype version of our algorithm in the open source model
checking framework Theta [16]. In order to enable abstraction refinement for
clock variables, we implemented a variant of the lazy abstraction method of [9]
based on LU -bounds, and the method described in [17] based on interpolation for
zones (with refinement strategy seq). These strategies are then combined both
with the explicit handling of discrete variables, resulting in algorithms similar
to that of the original papers [9, 17], and with the abstraction and refinement
method proposed in this paper. The algorithms are evaluated for both breadth-
first and depth-first search orders. This results in 8 algorithm configurations by
combining the above mentioned alternatives:

– explicit (E) or abstraction-based (A) handling of discrete variables,

– lazy a4LU abstraction (L) or interpolation (I) for clock variables and
– breadth-first (B) or depth-first (D) search order.

For the configurations that handle discrete variables explicitly, we partitioned
the set of nodes based on the value of the data valuation, this way saving the
O(n) cost of checking inclusion for valuations. This optimization also signifi-
cantly reduces the number of nodes for which coverage is checked and attempted
during close. Apart from this and the difference in refinement strategies, the
implementation of the configurations is shared.

As inputs we considered 15 timed automata models in Uppaal 4.0 XTA
format that contain integer variables. For each model, the number of discrete
variables / number of clock variables is given in parentheses.

– bocdp (26/3), bocdpf (26/3): models of the Bang & Olufsen Collision Detec-
tion Protocol obtained from the Uppaal1 benchmark set

– brp (9/7): a model of the Bounded Retransmission Protocol
– c1 (12/3), c2 (14/3), c3 (15/3), c4 (17/3): models of a real-time mutual

exclusion protocol obtained from the Mcta2 benchmark set
– m1 (11/4), m2 (13/4), m3 (13/4), m4 (15/4), n1 (11/7), n2 (13/7), n3 (13/7),

n4 (15/7): industrial cases studies obtained from the Mcta benchmark set

We performed our measurements on a machine running Windows 10 with
a 2.6GHz dual core CPU and 8GB of RAM. We evaluated the algorithm con-
figurations for both execution time (Table 1) and the number of nodes in the
resulting ASG (Table 2). The timeout (denoted by “—” in the tables) was set to
120 seconds. In the tables the best values among both the explicit and abstrac-
tion based configurations are emphasized with bold font for each model. The
execution time is the average of 10 runs, obtained from 12 deterministic runs by
removing the slowest and the fastest one.

As can be seen in Table 1, in general, the performance of the fastest con-
figurations of the two categories (explicit and abstraction based configurations)
with respect to execution time is balanced (there are no more difference than
100%). For models c1-3, the explicit configuration performed better, but the ab-
solute difference in execution time is not significant. For the other Mcta models,
the fastest configurations perform similarly with respect to execution time. For
model bocdpf the abstraction-based variant was almost twice as fast, whereas
the opposite is true for models bocdp and brp. In total, the abstraction based
variant is faster than the corresponding configuration without abstraction in one
fourth of the cases, and configuration AID is faster than a given configuration
without abstraction in two thirds of the cases.

When comparing the methods based on the number of ASG nodes generated,
the difference is more significant, as it can be seen in Table 2. As expected,
the abstraction-based method produces a smaller ASG than the corresponding
configuration without abstraction in most (97%) of the cases, and the state

1 https://www.it.uu.se/research/group/darts/uppaal/benchmarks
2 http://gki.informatik.uni-freiburg.de/tools/mcta

https://www.it.uu.se/research/group/darts/uppaal/benchmarks
http://gki.informatik.uni-freiburg.de/tools/mcta

Table 1. Execution time in seconds per model and configuration

EIB ELB EID ELD AIB ALB AID ALD

bocdp 11.2 4.8 8.7 7.0 11.7 11.1 8.7 7.9

bocdpf 23.7 14.3 20.0 16.4 14.9 13.4 7.7 7.5

brp 12.0 5.4 20.9 9.2 12.2 9.5 14.3 16.3

c1 2.0 1.3 1.6 1.8 3.6 4.0 2.9 3.2

c2 5.3 3.2 3.9 4.7 7.1 8.5 5.0 6.8

c3 6.2 4.5 5.0 4.9 8.5 9.1 6.9 7.6

c4 71.5 53.9 43.2 52.4 59.8 77.2 41.0 49.6

m1 2.0 1.8 0.9 1.5 2.5 4.6 1.1 1.7

m2 4.6 4.7 2.3 4.3 6.5 12.4 2.1 4.2

m3 5.2 4.7 2.4 4.6 7.2 13.0 2.6 4.7

m4 17.4 23.1 6.3 16.0 27.4 68.5 6.1 —

n1 2.4 2.2 1.2 1.6 2.8 4.4 1.2 1.6

n2 6.2 5.9 3.0 4.3 7.0 13.9 2.6 4.7

n3 6.1 6.0 3.4 4.9 7.7 14.5 2.8 4.8

n4 23.9 31.5 7.5 27.8 30.5 78.6 5.6 18.0

Table 2. Number of nodes in the ASG per model and configuration

EIB ELB EID ELD AIB ALB AID ALD

bocdp 94801 74052 84136 96133 32639 34107 29846 32520

bocdpf 212225 172865 182085 196003 38492 39801 26544 29491

brp 72117 96624 114198 159249 39702 68979 52049 104552

c1 20967 18590 18612 23030 17155 20825 14973 18155

c2 67433 67325 57260 70198 44711 58351 39644 47725

c3 86285 85695 76122 94887 50617 62215 46594 55473

c4 876266 866890 737271 917527 339560 418619 318470 384214

m1 8541 19217 3650 14720 4394 13078 1941 4868

m2 31932 73667 15610 62879 16246 39773 5728 15797

m3 38128 74514 15966 73879 18463 42574 6707 17783

m4 145378 297343 63523 250221 66406 146804 20519 —

n1 7510 18660 3915 13132 4222 11802 1942 4222

n2 32038 79741 15534 54954 15819 42937 5932 17695

n3 32799 83982 16602 68010 17014 44741 6547 17903

n4 142053 325485 60120 342408 64934 155729 17568 70762

space generated by configuration AID is smaller in all cases. On average, the
reduction in size in favor of the abstraction based handling of discrete variables
is around 50%. In the worst case (model c1), the reduced size is around 80%,
and in the best case (model bocdpf) it is 15%, i.e. the introduction of abstraction
has significant gain.

To characterize the fastest configurations, Figure 1 depicts the execution time
(first column in blue) and number of nodes generated (second column in red)
for the fastest configuration with abstraction relative to the performance of the
fastest configuration without abstraction. Similarly, Figure 2 depicts the relative
performance when considering the configurations generating the least number of
nodes. According to Figure 1, if the configuration with abstraction performs well
in execution time, then it also performs well in the number of nodes generated.
Conversely, according to Figure 2, if significant reduction is achieved in the size
of the state space, then the algorithm with abstraction also tends to perform well
in terms of execution time (except for model bocdp). Moreover, as can be seen
on both charts, within a group of models (c, m and n), the relative performance
of the abstraction method tends to increase with increasing model complexity.

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

Fig. 1. Relative execution time
and number of nodes generated of
fastest configurations

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

Fig. 2. Relative execution time
and number of nodes generated of
configurations with the smallest ASG

Moreover, for the models considered, configuration AID (Abstraction of dis-
crete variables, Interpolation-based abstraction of clock variables, Depth-first
search order) approximates the best configuration well for both execution time
and ASG size, as this configuration tends to have a good performance on the
more complex models. This is depicted on Figure 3 and Figure 4, where we com-
pared configuration AID with the E-configurations in terms of execution time and
size of the generated state space, respectively. In Figure 3, we denote by BEST
the virtual best configuration, calculated from the best results of all other con-
figurations. This data is omitted in Figure 4, as BEST greatly overlaps with
configuration AID in terms of states generated. Moreover, to focus on the signif-
icant differences, we only depicted data for the hardest six models (denoted as
10 . . . 15 on the horizontal axis) for each configuration.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

10 11 12 13 14 15

EIB ELB EID ELD AID BEST

Fig. 3. Time to solve the hardest
model instances (seconds)

0

200000

400000

600000

800000

1000000

10 11 12 13 14 15

EIB ELB EID ELD AID

Fig. 4. Number of nodes generated for
the hardest model instances

5 Conclusions

In this paper we proposed a lazy algorithm for the location reachability problem
of timed automata with discrete variables. The method is based on controlling
the visibility of discrete variables by using interpolation for valuations of vari-
ables. We demonstrated with experiments that our abstraction and refinement
strategy, combined with lazy methods for the abstraction of continuous clock
variables, can achieve significant reduction in the size of the generated state
space during search, typically with low or no overhead in execution time, and in
cases even with an additional speedup.

Future work. According to the method described in this paper, refinement is
triggered upon encountering a disabled transition. In the future, we intend to
experiment with counterexample-guided refinement for both the abstraction of
discrete and continuous variables. In addition, we plan to experiment with dif-
ferent abstract domains (e.g. intervals), and investigate alternative refinement
strategies for the discrete variables of timed systems. In particular we are inter-
ested in the performance for timed automata of the forward interpolation tech-
nique described in [4]. Moreover, we plan to explore more sophisticated strategies
for finding covering states, as this can potentially yield considerable speedups
for our method. Furthermore, although we evaluated our abstraction method in
the context of timed systems, the technique itself can be applied in a more gen-
eral context, and we plan to investigate its uses for model checking imperative
programs.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994), doi:10.1016/0304-3975(94)90010-8

2. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer
(2003), doi:10.1007/3-540-36577-X 18

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/3-540-36577-X_18

3. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: TACAS 2004. LNCS, vol. 2988,
pp. 312–326. Springer (2004), doi:10.1007/978-3-540-24730-2 25

4. Beyer, D., Löwe, S.: Explicit-state software model checking based on cegar and
interpolation. In: FASE 2013. LNCS, vol. 7793, pp. 146–162. Springer (2013),
doi:10.1007/978-3-642-37057-1 11

5. Carioni, A., Ghilardi, S., Ranise, S.: Mcmt in the land of parametrized timed
automata. In: 6th International Verification Workshop (VERIFY-2010). pp. 47–64
(2010)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. Journal of the ACM 50(5), 752–
794 (2003), doi:10.1145/876638.876643

7. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer (1998),
doi:10.1007/BFb0054180

8. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstrac-
tion. In: Principles of Programming Languages. pp. 58–70. ACM (2002),
doi:10.1145/503272.503279

9. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed
automata. In: CAV 2013. LNCS, vol. 8044, pp. 990–1005. Springer (2013),
doi:10.1007/978-3-642-39799-8 71

10. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex ap-
proximations for efficient analysis of timed automata. In: Foundations of Software
Technology and Theoretical Computer Science. LIPIcs, vol. 13, pp. 78–89 (2011),
doi:10.4230/LIPIcs.FSTTCS.2011.78

11. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for
timed automata. In: Logic in Computer Science. pp. 375–384. IEEE (2012),
doi:10.1109/LICS.2012.48

12. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating
timed systems. In: Horn Clauses for Verification and Synthesis. EPTCS, vol. 169,
pp. 39–52. Open Publishing Association (2014), doi:10.4204/EPTCS.169.6

13. Isenberg, T., Wehrheim, H.: Timed automata verification via ic3 with zones. In:
ICFEM 2014. LNCS, vol. 8829, pp. 203–218. Springer (2014), doi:10.1007/978-3-
319-11737-9 14

14. Kindermann, R., Junttila, T., Niemelä, I.: Smt-based induction methods for timed
systems. In: FORMATS 2012. LNCS, vol. 7595, pp. 171–187. Springer (2012),
doi:10.1007/978-3-642-33365-1 13

15. Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed
automata. In: CAV 2011. LNCS, vol. 6806, pp. 616–632. Springer (2011),
doi:10.1007/978-3-642-22110-1 50

16. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: A framework for ab-
straction refinement-based model checking. In: Formal Methods in Computer Aided
Design. pp. 176–179. FMCAD Inc. (2017), doi:10.23919/FMCAD.2017.8102257

17. Tóth, T., Majzik, I.: Lazy reachability checking for timed automata using inter-
polants. In: FORMATS 2017. LNCS, vol. 10419, pp. 264–280. Springer (2017),
doi:10.1007/978-3-319-65765-3 15

18. Wang, W., Jiao, L.: Difference bound constraint abstraction for timed automata
reachability checking. In: FORTE 2015. LNCS, vol. 9039, pp. 146–160. Springer
(2015), doi:10.1007/978-3-319-19195-9 10

http://dx.doi.org/10.1007/978-3-540-24730-2_25
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/BFb0054180
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1007/978-3-642-39799-8_71
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.78
http://dx.doi.org/10.1109/LICS.2012.48
http://dx.doi.org/10.4204/EPTCS.169.6
http://dx.doi.org/10.1007/978-3-319-11737-9_14
http://dx.doi.org/10.1007/978-3-319-11737-9_14
http://dx.doi.org/10.1007/978-3-642-33365-1_13
http://dx.doi.org/10.1007/978-3-642-22110-1_50
http://dx.doi.org/10.23919/FMCAD.2017.8102257
http://dx.doi.org/10.1007/978-3-319-65765-3_15
http://dx.doi.org/10.1007/978-3-319-19195-9_10

Appendix

For the raw measurement data, input models and binaries and source code of the
prototype implementation, visit http://home.mit.bme.hu/~totht/spin2018/.
In case of acceptance, this appendix will not be included in the camera-ready
version.

http://home.mit.bme.hu/~totht/spin2018/

	Lazy Reachability Checking for Timed Automata with Discrete Variables

