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ABSTRACT
An e�ective form of systematic testing is constraint-based testing

where the user writes logical constraints to describe properties of
desired inputs, and constraint solvers enumerate all tests within a
bound on the input size. �e key challenge in systematic constraint-
based testing is e�ciently exploring very large spaces of all possible
inputs to enumerate the desired valid inputs. Previous work intro-
duced the Korat technique to address this challenge. Korat uses
desired input properties wri�en as imperative predicates and per-
forms a backtracking search that prunes large parts of the input
space to enumerate all non-equivalent (i.e., non-isomorphic) inputs
within a given bound on input size. While Korat’s pruning improves
its performance, systematically generating large numbers of inputs
and testing against them can be costly in practice.

�is paper introduces a novel approach to reduce the cost of the
Korat search in certain application scenarios. Our key insight is that
sometimes the Korat search over the same state space is repeated
across separate runs of Korat, and an earlier run of the search can be
summarized to more e�ciently perform a later run. Speci�cally, we
introduce the idea of invalid ranges which succinctly encode parts
of the exploration space that do not contain any valid inputs but
have to be explicitly explored by the Korat search since it is unable
to prune them. Our approach directly prunes these parts in a future
run of Korat over the same input space. We develop our approach
for two se�ings: a sequential se�ing where the Korat search is run
using one worker (i.e., processing unit), and a parallel se�ing where
the Korat search is distributed to several workers. In the parallel
se�ing, we build on a previous technique for parallel Korat, namely
SEQ-ON, and integrate invalid ranges with it. Our prototype tool
MKorat embodies our approach. Experimental evaluation using 6
subjects from the standard Korat distribution show that MKorat
achieves: in the sequential se�ing, a speedup of up to 2.82X over
sequential Korat (in comparison, SEQ-ON does not provide any
speedup in the sequential se�ing); and in the distributed se�ing,
using up to 32 workers, a speedup of up to 38.84X over sequential
Korat (using 1 worker), and up to 3.04X over SEQ-ON in terms of
total execution time across the workers.
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1 INTRODUCTION
Systematic so�ware testing [1, 3, 5, 13, 14, 16, 21, 25], which has

its roots in the core idea of systematic exploration of bounded state
spaces in model checking [6, 14, 37], has been used in a number of
applications for �nding subtle bugs in so�ware systems. A particu-
larly e�ective approach for systematic testing is constraint-based
testing where logical constraints characterize desired inputs and
expected program behaviors as preconditions and postconditions
respectively [3, 25]. A number of di�erent techniques embody this
approach and support constraints wri�en in di�erent languages,
including declarative languages [25] and imperative languages [3].

Our work focuses on the constraints wri�en as imperative predi-
cates, termed repOK [24], which are executable checks that charac-
terize desired properties using an imperative language, e.g. Java,
and likely pose minimal learning burden on users because of the
wide use of such languages. �e foundation of our work is the
Korat technique for test input generation using imperative con-
straints [3, 26]. Given a repOK predicate, which characterizes de-
sired inputs, and a �nitization, i.e., a bound on the input size, Korat
enumerates each non-isomorphic input within the bound such that
executing repOK on the input returns true. �us, the inputs gener-
ated by Korat form bounded exhaustive tests and include every valid
input with respect to the given repOK and �nitization bound. �e
space of all candidates to consider as inputs to repOK is usually very
large, e.g., > 272, even for small bounds on input size, e.g., 10 nodes
in a binary search tree [3]. �e Korat algorithm performs pruning
and isomorph-breaking to exhaustively explore such large input
spaces. However, the application of Korat in practice is limited by
two key factors: the size of the underlying state spaces and the
number of valid inputs created.

We introduce a novel approach to reduce the cost of the Korat
search in certain application scenarios. Our key insight is that
the Korat search is sometimes repeated over the same state space
across separate runs of Korat, and an earlier run of the search can
be summarized to more e�ciently perform a later run. Such a
scenario arises, for example, when Korat search is used for testing
multiple methods where some of the methods share a common
input constraint but storing (all) the inputs is not feasible [26]:
the testing approach chooses one method to test, and iteratively
creates an input, runs the method, and checks its behavior until
testing this chosen method is complete, and then selects the next
method, and continues until all methods have been tested. Another
example scenario arises when Korat is used as an external constraint
solver [11]. To illustrate, consider systematic checking [20, 21]
of two methods m() and n() of a class with class invariant inv (),
which represents a precondition for bothm() andn(). Checkingm()
requires checking the programp: “if (inv()) m();” and checking
n() requires checking the program q: “if (inv()) n();”. �us,
checkingm() and n() requires solving the same constraint inv () –
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all execution paths that reach m() in p (likewise n() in q) require
inv () to evaluate to true. Indeed, the same optimization opportunity
arises when n() is actually just an updated version of m(), which
needs to be re-checked say a�er on a bug �x or feature addition in
the context of evolution.

We introduce the idea of invalid ranges which succinctly encode
parts of the exploration space that do not contain any valid input
but must be explicitly explored by the Korat search since it is unable
to prune them [8]. Our approach prunes these parts in a future
run of Korat over the same input space. We develop our approach
for two se�ings: a sequential se�ing where the Korat search is run
using one worker (i.e., processing unit), and a parallel se�ing where
the Korat search is distributed to several workers. In the sequential
se�ing, we directly use invalid ranges to prune the search. In the
parallel se�ing, We build on a previous technique, namely SEQ-
ON [26], and integrate invalid ranges with it.

SEQ-ON was de�ned by the parallel Korat approach [26], which
originally introduced the idea of parallel test generation and execu-
tion using Korat to mitigate the two key limiting factors. Concep-
tually, parallel execution of tests generated using Korat is relatively
straightforward: distribute the tests evenly among the parallel
workers. However, parallel generation of tests using Korat is a non-
trivial problem because Korat’s pruning is inherently sequential:
what to prune depends on what was explored and cannot simply
be determined a priori. Speci�cally, Korat considers one candidate
input at a time, checks the validity of the current candidate by exe-
cuting repOK against it, and uses the execution as a basis of creating
the next candidate, and by doing so prunes many candidates from
the search. �us, evenly distributing the test generation workload
among parallel Korat workers is challenging.

SEQ-ON was speci�cally designed to address the scenario where
Korat is used to create inputs for testing a number of di�erent
methods under test but the inputs are not stored: for each method
under test, inputs are created and the method executed against each
input as it is created. A key contribution of the SEQ-ON algorithm
is that it uses the �rst execution of Korat for input generation to
create a �xed number of equidistant candidates based on the number
of workers, which allows all subsequent executions of Korat on
the same constraint solving problem to be performed in parallel
such that each parallel worker only explores the range de�ned by
two consecutive equidistant candidates, and the workload is evenly
distributed among the parallel workers.

We de�ne invalid ranges as sequences of consecutive invalid
candidates that are explored by the standard Korat search. We
summarize such a sequence succinctly using just two candidates as
end-points during the �rst execution of Korat for input generation,
and re-use it for more e�cient exploration in the subsequent execu-
tions of Korat for input generation – the subsequent executions are
able to prune invalid candidates that the initial Korat search was
unable to prune and had to explicitly check using repOK. We apply
invalid ranges in tandem with equidistant candidates to de�ne a
more e�ective technique for parallel test generation using Korat.

Our prototype tool MKorat embodies our approach. We show
the e�ectiveness of our approach using a suite of controlled ex-
periments. Speci�cally, we evaluate how MKorat compares with
traditional Korat in a sequential se�ing and how the use of invalid
ranges improves over just equi-distancing. Moreover, we evaluate

how the performance of MKorat varies as the number of invalid
ranges is increased.

�is paper makes the following contributions:
• Idea. We introduce the idea to summarize and re-use parts

of the state-space that do not contain any valid input to
enhance solving of imperative constraints for systematic
input generation.

• Invalid ranges. We de�ne invalid ranges, which suc-
cinctly represent consecutive invalid candidates that the
standard Korat search is unable to prune and must explic-
itly check by invoking repOK.

• Test generation technique. We introduce a new tech-
nique to optimize input generation using imperative con-
straints when the Korat search is re-run for the same ex-
ploration space. We develop our technique for a sequential
se�ing and a parallel se�ing by building on the SEQ-ON
algorithm from previous work [26] and integrating invalid
ranges with it.

• Evaluation. We use a suite of 6 subjects from the standard
Korat distribution to evaluate our approach. Experimen-
tal results show that MKorat achieves: in the sequential
se�ing, a speedup of up to 2.82X over sequential Korat (in
comparison, SEQ-ON does not provide any speedup in the
sequential se�ing); and in the distributed se�ing, using up
to 32 workers, a speedup of up to 38.84X over sequential
Korat (using 1 worker), and up to 3.04X over SEQ-ON in
terms of total execution time across the workers.

We believe invalid ranges provide the foundation for an exciting
method for increasing the e�cacy of systematic testing and analysis
using imperative constraints. While our focus in this paper is on
re-execution of the Korat search over the same state space as the
previous execution, we believe invalid ranges can be generalized to
enable re-use in more general se�ings where state spaces among
di�erent executions di�er, e.g., due to a change in the constraint
being solved or the bound being used. We plan to address such
se�ings in future work.

2 ILLUSTRATIVE EXAMPLE
We illustrate the concept of invalid ranges and the basis of our

approach using an example from the Korat project’s source code1.
Figure 1 shows the Java declaration of the red-black tree data struc-
ture [7], which implements a balanced binary search tree, the repOK
predicate that implements a check for the structural integrity con-
straints of a red-black tree (acyclicity, correct coloring of nodes
etc.), and the �nitization description (the �nRedBlackTree method)
which sets a bound on Korat search. Each tree has a root node and
caches the number of nodes in the size �eld. Each node contains
an integer key and value, and has a left child, a right child, and
a parent pointer, as well as a color, which is RED or BLACK. To
test a method that operates on an input red-black tree, such as
instance method “add(int x)”, we must generate a valid tree t,
i.e., t.repOK() returns true, as an input (the receiver object) as well
as provide an integer input x. To create valid red-black trees, Korat
uses the given repOK method and �nitization to create the space

1h�ps://korat.svn.sourceforge.net/svnroot/korat/trunk, revision 12
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1 public class RedBlackTree {

2 private Node root = null;

3 private int size = 0;

4 private static final int RED = 0;

5 private static final int BLACK = 1;

6 public static class Node {

7 int key;

8 int value;

9 Node left = null;

10 Node right = null;

11 Node parent;

12 int color = BLACK;

13 }

14 public boolean repOK() { ... }

15

16 // Bound Korat exploration to trees with 'num' Nodes.

17 public static IFinitization finRedBlackTree(int num) {

18 IFinitization f = FinitizationFactory.create(

19 RedBlackTree.class);

20 IClassDomain entryDomain = f.createClassDomain(

21 Node.class , num);

22 IObjSet entries = f.createObjSet(Node.class , true);

23 entries.addClassDomain(entryDomain);

24

25 IIntSet sizes = f.createIntSet(num , num);

26 IIntSet keys = f.createIntSet(-1, num - 1);

27 IIntSet values = f.createIntSet (0);

28 IIntSet colors = f.createIntSet (0, 1);

29

30 f.set("root", entries);

31 f.set("size", sizes);

32 f.set("Node.left", entries);

33 f.set("Node.right", entries);

34 f.set("Node.parent", entries);

35 f.set("Node.color", colors);

36 f.set("Node.key", keys);

37 f.set("Node.value", values);

38

39 return f;

40 }

41 }

Figure 1: RedBlackTree subject1.
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Figure 2: Korat generates 961 candidates for �nRedBlack-
Tree(4). A valid candidate index is marked by a cross (×).

Figure 3: Valid red black trees with 4 nodes generated by Ko-
rat. Node keys are uniquely assigned from set S = {1, 2, 3, 4}.
of candidate inputs to explore and generates all inputs for which
repOK returns true.

�e Korat search operates on candidate vectors, which are integer
arrays that encode object graphs and allow e�cient backtracking.
Figure 2 shows the consecutive range of all candidate vectors gen-
erated by Korat search for �nRedBlackTree(4), which are red-black

trees containing exactly 4 nodes. Korat explores the total number
of 961 non-isomorphic candidates, out of which only 8 satisfy the
repOK predicate. Figure 3 shows all 8 valid instances found2.

Korat supports ranging the search, i.e., bounding it to explore
a subset of the space of all candidates [26]. Speci�cally, given a
pair of start and end candidate vectors, such that the standard
Korat search would explore start before end, Korat can be ranged
to only search for valid structures between start and end. Ranging
allows the distribution of Korat execution across several individual
workers. �e SEQ-ON equi-distancing algorithm in prior work [26]
introduces a technique to distribute Korat execution for future runs
of the same search.

For the �nRedBlackTree(4) example, given 4 workers, the equi-
distancing algorithm splits the explored candidates into 4 partitions,
each with the same approximate size of 256 candidate vectors3. As
shown in Figure 2, there are 8 valid candidates among 961 explored,
i.e., 99.16% of the candidates explored are invalid and represent
redundant search. �e explored indexes of the valid candidate
vectors in this example are: 366, 434, 517, 585, 671, 738, 829, and 896.
�e main pitfall of SEQ-ON algorithm is that while it parallelizes
the executions, the total number of explored candidates across all
workers remains the same as the sequential run. Since exploring
invalid candidates is redundant, our approach tries to prune them
and not to re-explore them.

We de�ne an invalid range as a sequence of consecutive invalid
candidates explored by Korat search, such that repOK predicate
returns false on all of them. MKorat removes a bounded number
(m ≥ 1) of invalid ranges as desired by the user. Further, MKorat
distributes the remaining ranges among k ≥ 1 workers with respect
to the k equidistant ranges maintained by SEQ-ON. Givenm = 3,
MKorat removes the 3 largest invalid ranges [435, 517), [586, 671),
and [739, 829), in addition to the head and tail invalid ranges, i.e.,
[0, 366) and [897, 961]. In total 5 invalid ranges will be removed
that are highlighted in red.

�e only 4 remaining ranges needed to be re-explored (high-
lighted blue) are: [366, 435), [517, 586), [671, 739), and [829, 897).
Worker one remains idle, as the range [0, 256) belongs in a known
invalid range. Worker two takes subrange 1 . Worker three ex-
plores subranges 2 and 3 . �e �nal worker takes over range
4 . �e result is 71.48% reduction in the re-explored state space,

while using fewer computing resources. Note that for this example,
MKorat can achieve a higher reduction for larger values of invalid
ranges if so desired by the user.

3 TECHNIQUE
In this section, we �rst describe our technique to build invalid

ranges using an initial run of Korat. Next, we recall the original SEQ-
ON algorithm [26] (Section 3.1) and present our parallel technique
MKorat, which builds on SEQ-ON (Section 3.2). Next, we discuss
some implementation details of MKorat (Section 3.3) and several
key properties of our prototype (Section 3.4).

Our core approach performs an initial run of Korat to build
invalid ranges (Figure 4), which are used for additional pruning in
subsequent runs of Korat when exploring the same input space. In
2�e root of a red-black tree should be colored black. However, this rule can be relaxed,
as in the provided repOK, because the root can always be changed from red to black.
3In this example, the last range has 961-768=193 elements.
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Input: subject w/ repOK and fin; user provided upper bound m
1: function MKorat(subject, m)
2: Korat.init(subject)
3: prevCV← Korat.getStartCandidateVector()
4: ranges← boundedDescendingSortedTree(m)
5: while Korat.hasNextValidCandidate() do:
6: validCV, numExplored← Korat.nextValidCandidate()
7: ranges.insert(tuple(prevCV, validCV), numExplored)
8: prevCV← validCV
9: done

10: if Korat.hasNextCandidate() then:
11: endCV, numExplored← Korat.lastCandidate()
12: ranges.insert(tuple(prevCV, endCV), numExplored)
13: �
14: return ranges.buffer()
15: end function

Figure 4: Collecting an upper bound ofm invalid ranges in
Korat search.

addition to the inputs that the standard Korat algorithm takes, our
approach takes as input an upper bound (m > 1) on the number
of invalid ranges to maintain and reuse. Increasing this number
of invalid ranges likely allows more e�cient subsequent search
but increases the storage (space) requirements. Line 2 (in Figure 4)
initializes the Korat search problem for a given subject. Line 3
sets prevCV to the initial candidate vector Korat has to explore.
Next, Line 4 builds a max heap data structure to contain the m
largest candidate vector tuples, plus head and tail (Section 3.2)
invalid ranges upon �rst and last insertion respectively (if they
exist). Lines 6 and 7 �nds the next valid candidate by running Korat
search and inserts a new invalid range into ranges encoded by
a tuple of candidates plus the size of the invalid range. Lines 11
and 12 �nd the tail invalid range (if any) and insert it into the
ranges. Finally Line 14 returns the invalid ranges maintained.

3.1 Background: Equi-distancing for SEQ-ON
�e key novelty of the original parallel test generation and execu-

tion algorithm using Korat [26] (SEQ-ON) is to not store all inputs
for creating equidistant candidates. �e design goal behind this al-
gorithm is to store su�cient information during the �rst sequential
run, so that all future runs can be parallelized and load-balanced.
Speci�cally, this algorithm obtains a sequence of equidistant candi-
date vectors 〈C1,C2, ...,Cn〉, i.e., Korat explores (almost) the same
number of candidates in any range [Ci ,Ci+1) for 0 ≤ i < n − 1 and
[Cn−1,Cn], and the union of all such ranges, becomes the entire
explored space⋃n−2

i=0 [Ci ,Ci+1)
⋃[Cn−1,Cn] = [C0,Cn], where C0

is the initial and Cn is last candidate vectors explored.
Figure 5 shows the pseudo-code of the SEQ-ON algorithm. �e

equiDistantCandidates function keeps an array of candidates, with
size twice as large as the number of maximum workers. As the num-
ber of explored candidates in Korat search is not known beforehand,
this technique records each candidate being explored in the �rst
round. When the array capacity is full, it moves the candidates at
even indexes in the array to le� half, and continues recording every
second candidate in the right half. In the next round, it records
every fourth candidate being explored. �is process continues, and
at the end, the function returns the candidates to keep for the future
parallel executions.

1 // input: 'm' is the maximum number of workers

2 // output: an array of equidistant candidates ,

3 // with the array length between m and 2 * m

4 Candidate [] equiDistantCandidates(int m) {

5 Candidate [] candidates = new Candidate [2 * m];

6 int distance = 1;

7 int index = 0;

8 while (Korat.hasNext ()) {

9 for (int i = 0; i < distance; i++) {

10 candidates[index] = Korat.next();

11 if (!Korat.hasNext ()) break;

12 }

13 if (index < candidates.length) index ++;

14 else {

15 // half the array and double the distance

16 for (int j = 0; j < candidates.length / 2; j++)

17 candidates[j] = candidates [2 * j + 1];

18 distance = distance * 2;

19 index = m;

20 }

21 }

22 // resize the output length to valid indexes

23 Candidate [] result = new Candidate[index];

24 for (int i = 0; i < index; i++)

25 result[i] = candidates[i];

26 return result;

27 }

Figure 5: Equi-distancing for SEQ-ON [26].

3.2 MKorat
Our parallel technique, MKorat, builds on SEQ-ON and stores

m ≥ 1 largest invalid ranges during the �rst sequential run, and
excludes those ranges prior to distribution for future parallel runs.
�e remaining ranges 〈r1, r2, ..., rs 〉, are distributed with respect
to the k ≥ 1 equidistant candidate vectors maintained in SEQ-ON.
Moreover, if any equidistant candidate vector Cy falls into a range
ri = [Cx ,Cz ), the algorithm breaks the range to [Cx ,Cy ), [Cy ,Cz ).
�e spli�ing phase continues until no range in the �nal collection of
ranges Q = 〈q1,q2, ...,qt 〉 contains an equidistant candidate unless
it is the starting endpoint of a range. Finally, each worker takes a
subset of ranges from Q which belong to its equi-distant range.

Note that if an equi-distant range does not contain any valid
candidate, it will be discarded and no worker will be assigned to that
range, saving computational resources. Further, MKorat borrows
the single-pass spirit of SEQ-ON and does not impose extra time
and space complexity on top of this algorithm.

MKoratexc : Korat provides a command-line option --cvWrite,
which writes all explored candidates to a serialized �le f. Further,
two additional options --cvStart <num1> and --cvEnd <num2> are
supported to limit the search exploration range to the num1-st and
num2-nd candidates from �le f. For two main reasons this existing
option was not su�cient:

(1) Writing all generated tests of a sequential execution to a �le
can be prohibitively expensive, e.g., for �nRedBlackTree(12)
the size of the candidates.dat �le on disk is about 7.63GB.
However, to re-explore a range (for both SEQ-ON and
MKorat), only start and end candidates are required. Hence,
we overrode the --cvWrite command-line option to only
writes the endpoints of desired ranges into a �le.

(2) Due to existence of invalid ranges, the distribution phase
of MKorat may assign a worker several subranges to run.
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Option Values

--version 0: Korat, 1: SEQ-ON, 2: MKorat, 3: MKoratexc
--equi # of equidistant candidates
--invalid # of invalid ranges
--subranges set of <start, end> candidate vector pairs to run

Table 1: Korat extended command-line options

For example, worker three in Figure 2 takes two subranges.
We implemented an extension of Korat, namely MKoratexc
which takes arbitrary number of subranges (<start, end>
candidate vector pairs), and explores only candidates within
those given subranges.

For each Korat exploration, there are two special ranges which
only contain invalid candidates, namely head and tail invalid ranges,
described below. MKorat safely removes these two ranges in addi-
tion to them ≥ 1 parameter provided by the user:

• head invalid range is the range [C0,Cv ) where C0 is the
initial candidate vector and Cv is the �rst valid candidate
generated by the Korat search. For example, the range [0,
366) is the head invalid range in Figure 2. Note in case that
C0 is equal to Cv , the range [C0,Cv ) contains no element,
and head invalid range does not exist.

• tail invalid range is the range (Cw ,Cn] where Cn is the
last candidate vector and Cw is the last valid candidate
generated by the Korat search. For instance, (896, 961] is
the tail invalid range in Figure 2. In caseCw is equal toCn ,
the range (Cw ,Cn] is empty and tail invalid range does not
exist.

3.3 Implementation
Option

Ve
rs

io
n

eq
ui

in
va

lid

su
br

an
ge

s

0 7 7 7

1 3 7 7

2 3 3 7

3 7 7 3

Table 1 shows the new run-time options
we introduced in our MKorat framework. Op-
tion --version chooses between the 4 tech-
niques implemented within Korat framework,
namely: the original Korat, SEQ-ON, MKorat,
and MKoratexc . Next, option --equi determines
the number of equidistant candidates for SEQ-
ON and MKorat. Note that this number cannot
be greater than the total number of explored
candidates. �erefore, our implementations will use the minimum
of the two numbers. Option --invalid is the number of invalid
ranges MKorat considers. Similar to the --equi option, if this option
exceeds the total number of invalid ranges, the minimum of the
two values will be selected. Finally, option --subranges speci�es
subranges (<start, end> candidate pairs) to run. Table to the right
shows which options are required for each Korat extension we used
in our study.

3.4 Properties
Given a Korat search problem (repOK and �nitization), we de�ne

the Reduction achieved by MKorat as follows:

Reduction =
# o f invalid candidates MKorat prunes

# o f candidates Korat explores
�e denominator of the equation above is the total number of

candidates Korat explores in a sequential run, which is the same

number workers re-explore in SEQ-ON algorithm. �e numerator
is the number of invalid candidates MKorat prunes for future runs.
Given a large enough m ≥ 1 parameter, MKorat can achieve the
Reductionmax by pruning all existing invalid ranges from future
executions. MKorat has the following properties:

(1) Maximum candidates re-explored by a single worker, is at
most equal to the number explored by a worker in SEQ-ON
algorithm, because MKorat assigns each worker a subset
of its original equi-distant range.

(2) By de�nition of Reduction, the larger the number of ex-
plored invalid candidates are (compared to the valid ex-
plored candidates), the be�er MKorat is expected to per-
form. As an extreme case, for the constant returning repOK,
i.e, return true or false, Reductionmax will be 0% and 100%
respectively.

(3) �e number of valid instances Korat �nds for a given sub-
ject is an upper bound on the number of invalid ranges
that subject can have.

4 EVALUATION
We evaluate the e�ectiveness of MKorat, on a suite of standard

subjects shipped with Korat and used in prior studies. �is section
describes the experiment procedure we designed to answer the
following questions:

Q1. Can MKorat achieve Reductionmax ?
Q2. How does the number and distribution of valid candidate

vectors a�ect MKorat reduction?
Q3. What are the practical bene�ts of MKorat in terms of execution

time and required computational resources for sequential and parallel
se�ings?

4.1 Study

Subjects

BinaryTree (BT )
BinomialHeap (BH )
DoublyLinkedList (DLL)
RedBlackTree (RBT )
SearchTree (ST )
SinglyLinkedList (SLL)

Table to the right shows the 6 sub-
jects used in our study, which are taken
from Korat’s open-source repository1.
Prior studies used similar subjects in
their evaluation [3, 26, 29]. Due to
the bounded exhaustive nature of Korat
search, running these subjects does not
scale for large �nitization values. For
instance, given f inRedBlackTree (12) for the red-black tree exam-
ple discussed in Section 2, Korat explores 205,512,574 candidates
in 4 minutes and �nds 1,296 valid structures. We evaluated the
e�ectiveness of MKorat for each subject, and compared it with the
original SEQ-ON algorithm discussed in Section 3.1, with respect
to the reduction de�nition in Section 3.4.

4.2 Results
Table 2 shows basic information obtained by Korat execution

for our 6 subjects. �is table includes the number of candidates
explored, valid instances found, and number of invalid ranges for 5
di�erent �nitizations. Recall from section 3.2 that MKorat safely
removes the head and tail invalid ranges from the explored range;
hence, the number of invalid ranges in table 2 excludes these two
ranges (All 6 subjects across di�erent �nitizations had head and
tail invalid ranges). As shown in Table 2, the number of candidates
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Finitization
# of 2 4 6 8 10

Explored candidates 16 245 3653 54418 815100

BT Valid candidates 2 14 132 1430 16796
Invalid ranges 1 13 131 1429 16795

Explored candidates 58 1666 42815 1323194 150727471

BH Valid candidates 6 120 7602 603744 117157172
Invalid ranges 3 23 941 33555 6628009

Explored candidates 27 94 776 17166 562823

D
LL

Valid candidates 3 37 674 17007 562595
Invalid ranges 0 0 0 0 0

Explored candidates 40 961 16487 322806 7530712

RB
T

Valid candidates 2 8 20 64 260
Invalid ranges 1 7 19 63 259

Explored candidates 22 875 45233 2606968 155455872

ST Valid candidates 2 14 132 1430 16796
Invalid ranges 1 13 131 1429 16795

Explored candidates 17 139 2194 52567 1702171

SL
L

Valid candidates 2 15 203 4140 115975
Invalid ranges 1 14 202 4139 115974

Table 2: Number of candidates explored, valid instances
found, and invlid ranges explored by Korat.

Subject
Invalid ranges

1 4 16 64 256 1024

BT 0.37 0.88 2.71 8.91 28.48 80.25
BH 12.77 34.21 45.76 45.84 46.10 46.79
DLL 0.92 0.92 0.92 0.92 0.92 0.92
RBT 48.34 58.45 69.22 99.98 99.98 99.98
ST 0.17 0.43 1.40 5.01 18.81 72.54
SLL 0.22 0.50 1.45 4.54 13.84 38.79

Table 3: MKorat Reduction [%] for Fin = 8.

explored grows considerably as the �nitization increases, which
shows Korat’s bounded exhaustive testing technique does not scale
with the �nitization growth.

Based on Table 2, given a �nitization, the number of invalid
ranges for all subjects, except DLL and BH , is always 1 unit greater
than valid instances found (if head and tail invalid ranges are
counted). Our investigation showed that no two valid candidates
are consecutive in the explored candidates of these 4 subjects. For
DLL, the number of invalid ranges is 0, because all valid candidates
are consecutive and the only 2 invalid ranges are the head and
tail. Finally, BH has both consecutive and non-consecutive valid
candidates, resulting in a number of invalid ranges between 0 and
number of valid candidates.

For a �xed �nitization, the number of invalid ranges obtained
for each subject in Table 2, is an upper bound on the number of
ranges MKorat can remove from the explored space. For instance,
for the RBT of size 8, at most 63 invalid ranges can be removed
and running MKorat for anym > 63 number of invalid ranges does
not increase the reduction. Table 3 shows the reduction achieved
by MKorat for �nitization = 8, provided by 6 di�erent values for
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Figure 6: Reduction achieved by MKorat for di�erent num-
ber of invalid ranges (IRs) and �nitization sizes (Fin).

number of invalid ranges. For RBT , the last 3 columns (m ≥ 64)
achieve the Reductionmax which is 99.98%.

MKorat removes the m-largest invalid ranges independently
of the number of equidistant candidates. Hence, in terms of the
achieved Reduction, MKorat is agnostic to the number of equidistant
candidates, which we empirically validated on all our 6 subjects,
using various number of invalid ranges and equi-distant candidates.
Q1. Can MKorat achieve Reductionmax ?

MKorat implementation can provide the Reductionmax (intro-
duced in Section 3.4), by removing the m-largest invalid ranges,
givenm >= total number of invalid ranges explored.

�e 3D plots in Figure 6 show how the number of invalid ranges
and �nitization can a�ect reduction achieved by MKorat for all
6 subjects. Table 3 (discussed earlier) is basically an snapshot of
Figure 6 for Fin = 8. By de�nition (Section 3.4), higher Reduction
can be achieved for subjects with smaller ratio of valid to explored
candidates. As shown in Table 2, RBT has the smallest ratio of
valid to explored candidates for each �nitization. Figure 6 shows
that higher Reduction is achieved for RBT compared to the other
subjects and this reduction is reached for smaller values of invalid
ranges maintained by MKorat. Unlike, RBT , DLL has the highest
ratio of valid to explored candidates and the reduction reached for
this subject is smaller than others. �is observation is noticable in
Table 3 as well for these two subjects.
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W
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IR
s
[%

] Subject(Fin) Average
BT(12) BH(9) DLL(11) RBT(10) ST(9) SLL(11)

min max sum min max sum min max sum min max sum min max sum min max sum min max sum

1

0 12.43 14.65 6.04 9.96 15.81 7.73 11.10
4 11.42 11.81 6.04 4.75 15.19 7.25 9.41
8 10.45 11.67 6.09 4.51 14.50 6.75 8.99
16 9.08 11.80 6.05 4.23 13.66 5.81 8.44
32 6.81 11.70 6.00 3.53 11.09 4.90 7.34

2

0 6.10 6.42 12.52 6.64 7.79 14.44 3.14 3.15 6.28 4.46 6.30 10.76 7.90 8.36 16.26 3.93 3.94 7.88 5.36 5.99 11.36
4 5.67 5.95 11.62 4.45 7.46 11.92 3.15 3.15 6.30 0.01 4.79 4.80 7.49 7.97 15.46 3.64 3.77 7.42 4.07 5.51 9.59
8 5.40 5.61 11.02 4.48 7.53 12.02 3.13 3.15 6.28 0.01 4.52 4.52 7.13 7.57 14.70 3.20 3.80 7.00 3.89 5.36 9.26
16 4.58 4.84 9.42 4.44 7.48 11.92 3.15 3.16 6.32 0.01 4.19 4.20 6.69 7.01 13.70 2.90 3.14 6.04 3.63 4.97 8.60
32 3.42 3.51 6.92 4.46 7.46 11.92 3.13 3.13 6.26 0.01 3.53 3.54 5.46 5.81 11.26 2.07 3.02 5.08 3.09 4.41 7.50

8

0 1.70 1.80 13.84 1.37 2.17 15.60 0.87 0.88 7.04 1.28 2.10 12.80 2.16 2.26 17.68 1.11 1.13 8.96 1.42 1.72 12.65
4 1.56 1.72 12.96 0.06 2.16 13.04 0.87 0.89 7.04 0.01 2.07 5.75 2.02 2.19 17.04 0.97 1.08 8.40 0.91 1.68 10.71
8 1.44 1.58 12.00 0.06 2.16 13.04 0.87 0.88 7.04 0.01 1.98 5.55 1.90 2.13 16.40 0.79 1.04 7.52 0.84 1.63 10.26
16 1.21 1.44 10.40 0.06 2.16 12.96 0.87 0.89 7.04 0.01 1.82 5.20 1.77 1.97 15.28 0.73 0.89 6.16 0.78 1.53 9.51
32 0.86 0.97 7.44 0.06 2.17 13.04 0.87 0.89 7.04 0.01 1.59 4.35 1.53 1.65 12.88 0.45 0.94 6.16 0.63 1.37 8.48

32

0 0.55 0.58 17.92 0.39 0.61 17.28 0.26 0.26 8.32 0.46 0.87 20.16 0.71 0.75 23.68 0.32 0.33 10.56 0.45 0.57 16.32
4 0.50 0.54 16.64 0.01 0.60 14.40 0.26 0.26 8.32 0.01 0.87 9.52 0.64 0.75 22.72 0.26 0.34 10.56 0.28 0.56 13.69
8 0.43 0.51 15.36 0.01 0.61 14.08 0.26 0.27 8.32 0.01 0.87 9.38 0.60 0.72 21.76 0.27 0.36 10.24 0.26 0.56 13.19
16 0.38 0.47 13.76 0.01 0.60 14.40 0.26 0.27 8.32 0.01 0.83 8.82 0.57 0.68 20.16 0.20 0.27 7.04 0.24 0.52 12.08
32 0.26 0.32 9.60 0.01 0.60 14.40 0.26 0.27 8.32 0.01 0.78 7.28 0.43 0.57 16.64 0.07 0.27 6.72 0.17 0.47 10.49

Table 4: �emin,max, and total execution time (in sec) for (1) MKorat used in sequential settings (1 worker) compared to Korat
and (2)MKorat used in distributed settings (2, 8, and 32workers) compared to SEQ-ON. For each subject the user provided upper
bound on number of invalid ranges (IRs),m in Figure 4, is a percent of number of valid candidates for that subject(Fin).

Subject(Fin) SEQ-ON Invalid Ranges [%]
Explored 4 8 16 32

BT (12) 12284830 8.26 14.94 26.56 46.10
BH (9) 11778107 25.74 25.74 25.74 25.74
DLL(11) 3535294 0.01 0.01 0.01 0.01
RBT (10) 7530712 65.88 67.40 70.33 76.12
ST (9) 20086300 4.31 8.41 16.52 32.58
SLL(11) 10639556 9.30 15.67 28.43 41.58

Table 5: Total number of candidates explored by SEQ-ON
and the percent of those candidates MKorat prunes.

Q2. How does the number and distribution of valid candidate
vectors a�ect MKorat reduction?

MKorat achieves higher Reduction on subjects where the ma-
jority of explored candidates are invalid. As an extreme case,
a repOK method returning a constant, can achieve 0% or 100%
reduction for the constant values true and false respectively
(Validated on two constant returning repOKs).

Table 4 shows the minimum, maximum, and total execution
time (in seconds) for 4 di�erent number of workers. Speci�cally,
1 worker is used for the sequential se�ing comparing Korat with
MKorat, while 2, 8, and 32 workers indicate a parallel se�ing us-
ing SEQ-ON and MKorat techniques). For each subject, we chose
the largest �nitization for which a sequential execution of Korat
terminated within 30 seconds. Further, the m number of invalid
ranges MKorat maintains is provided based on a percent of number
of valid candidates explored by Korat for a given subject and Fin.
Node that the number of valid candidates found for a given subject

is an upper bound on the number of invalid ranges that subject
may have (Section 3.4).

Our results show that for both sequential and parallel se�ings,
MKorat can speedup the test generation. For example, the �rst two
rows in Table 4 show that given 1 worker, when only 4% of test
input pairs are maintained, the re-generation of test inputs becomes
18% faster on average (9.41 sec compared to 11.10 sec). Further, as
the percent of user-provided invalid ranges increase to 32%, the
re-execution becomes 51% faster on average (7.34 sec as opposed to
11.10 sec).

Recall from Figure 6 and Table 3 that the increase in number
of invalid ranges m maintained by MKorat, a�ect the Reduction
di�erently for di�erent subjects. Table 4 validates the same trend
of growth we expected for each subject. For instance, DLL had the
lowest growth of Reduction among other subjects (due to having
only two small head and tail invalid ranges); the 3 columns for
DLL in Table 4 show that the Reduction achieved for this subject
is almost agnostic to the increase of m invalid ranges. RBT , on the
contrary, had the highest rise in Reduction asm increased (Figure 6);
this outperformance is also evident from Table 4. �e e�ect of
increasing m on speedup for the other 4 subjects, is smaller than
RBT and larger than DLL, which is in alignment with the trend
observed earlier.

Besides saving in execution time, MKorat can save on the num-
ber of workers required. Speci�cally, if each candidate of an equi-
distant range e belongs to an invalid range that MKorat maintains,
then no worker would be assigned to re-explore range e. We ob-
served this case for RBT with 8 and 32 workers, when 4% (or above)
test input pairs are maintained, MKorat requires 5 (37.5% fewer
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machines) and 14 workers (56.25% savings) respectively. �e e�ect
of using fewer machines is re�ected on the total execution time for
these cases (highlighted in blue in Table 4).

Table 5 shows the number of candidates explored by SEQ-ON
and the percent of those candidates MKorat explored for the same
subjects, �nitizations, and invalid ranges reported in Table 4. As
shown, RBT achieved the highest Reduction (76.12%) across all sub-
jects for any percent of invalid ranges used, which explains why
MKorat performed be�er on RBT (execution times shown in Ta-
ble 4). �is observation was also expected based on the Reduction
achieved for RBT in Figure 6. Further, BH and DLL subjects achieve
their Reductionmax (25.74% and 0.01% respectively) for all 4 values
of invalid ranges used in our study. For these two subjects, we
observed that 4% of the number of valid candidates is a larger value
than their total number of invalid ranges maintained by MKorat.
�erefore, providing any percent of invlaid ranges larger than 4%
(of valid candidates) is not expected to a�ect the Reduction or exe-
cution time of BH and DLL. �is observation justi�es why given
the number of workers, the min, max, and total execution time of
MKorat for BH and DLL (in Table 4) stays (almost) the same.
Q3. What are the practical bene�ts of MKorat in terms of execu-
tion time and required computational resources for sequential and
parallel se�ings?

MKorat speeds up the minimum, maximum, and total worker
execution time by up to 2.82X in the sequential se�ing (1 worker)
and up to 446X, 1.86X, and 3.04X for the distributed se�ing with
up to 32 workers. In the distributed se�ing, for subjects with
small ratio of valid to explored candidates, like RBT , MKorat
can provide up to 56.25% savings in number of physical workers
required for re-exploration.

Execution platform: We obtained all data on a dedicated clus-
ter in which each node has 16-core 2.7 GHz Intel Xeon CPU E5-2680
with 32GB of RAM, running CentOS release 6.8 (Final). We used
Oracle Java: 1.8.0 25. Each MKoratexc was run on a single physical
node (on a separate JVM) provided by -Xms2g -Xmx3g command
line options.

4.3 �reats to Validity
External: �e subjects used in our study may not be represen-

tative. To mitigate this threat, we considered 6 subjects shipped
with Korat source code that vary in code size, complexity of repOK,
number of explored and valid candidates. Some of these projects
have also been used in prior studies on Korat. Our results may vary
for di�erent �nitizations and number of invalid ranges maintained.
Exploring all the combinations was not feasible. To mitigate this
threat, we considered several combinations to show the existing
relation between di�erent values of parameters. Further, the �ni-
tizations and number of equidistant candidates considered in our
study is on a par with prior work [3, 26, 29].

Internal: Korat, implementation of MKorat, and our automation
scripts may contain bugs that can impact our conclusions. We are
mostly con�dent in the correctness of Korat, as it is a robust tool
used in several prior studies. To increase the con�dence in our
scripts, we developed core parts of our technique twice following
(1) an e�cient approach, and (2) a less e�cient technique (in terms

of execution time) and observed that their functional behavior re-
mained the same across two versions. Further, we placed assertions
at certain points in our scripts to perform some sanity checks. For
instance, the script which distributed subranges (obtained by MKo-
rat) on workers for re-exploration (in Table 4), ensured that per each
MKorat execution, the total number of valid instances found across
all workers, is equal to the ones found using a sequential execution
of Korat. Further, to increase the con�dence in our scripts, we
reviewed our code, tested it on a number of subjects manually, and
inspected several results. To reduce noise and get more consistent
numbers for Table 4 (which contain execution times), we measured
the values several times and reported the average.

Construct: To �nd equi-distant candidates (Table 4) we used
m = 2048 as maximum number of workers maintained by SEQ-ON
algorithm [26]. We chose this large enough value to form evenly
distributed subranges for distribution among up to 32 workers used
in our study. For each subject in Table 4, we considered di�erent
number of invalid ranges (equal to a percent of number of valid test
inputs found for that speci�c subject), to have a more meaningful
and fair comparison between the execution times among di�erent
subjects. For Figure 6, we considered a wide range of �nitizations
and invalid ranges to observe the unique trend in Reduction increase
for each subject.

5 RELATEDWORK
�is chapter presents related work on parallel analysis for sys-

tematic testing. Speci�cally, we consider two approaches for testing
sequential programs, including one black-box testing technique,
namely Korat [3], and one white-box testing technique, namely
symbolic execution [22], and one approach, namely model check-
ing [6], for testing multi-threaded programs. Moreover, we consider
incremental analysis techniques that re-use results from previous
runs.

5.1 Parallel Korat
�e idea of parallel test generation and execution in the context

of Korat was introduced by Misailovic et al. [26]. �e idea of invalid
ranges is rooted in their discussion on potential optimizations [26]
where they observe the potential usefulness of creating sub-ranges
that start and end at valid candidates. Our technique, MKorat,
builds on this observation.

PKorat [29] introduced a di�erent approach for parallel test
generation using Korat. �e key idea in PKorat is to explore Korat’s
non-deterministic �eld assignments in parallel. �us, PKorat does
not require a previous execution of the Korat search but can still
explore the space of candidate structures in parallel. However, re-
running PKorat in the online test generation se�ing does not utilize
any information about any previous execution of Korat; speci�cally,
re-running PKorat does not utilize invalid ranges and re-explores
all candidates that sequential Korat explores by default. While the
original PKorat technique was de�ned for execution for a cluster
of traditional computing platforms, recent work specialized PKorat
for modern GPU’s [27]. Our approach is orthogonal to PKorat and
can be integrated with PKorat. For example, PKorat can be used
to explore each range that our approach creates based on the �rst
execution of Korat search.
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5.2 Parallel symbolic execution
ParSym [30] applies the PKorat approach to symbolic execution

– a classic program analysis based on systematic exploration of
the program’s bounded execution paths. Simple Static Partition-
ing [33] for parallel symbolic execution �rst performs a shallow
depth execution to build a set of preconditions based on the number
of available workers who perform deeper exploration with respect
to their individual preconditions. �e parallel symbolic execution
tool Cloud9 [4] embodies a production quality infrastructure based
on load balancing.

Ranged symbolic execution [31] de�nes ranges for symbolic exe-
cution and uses them for distributing the symbolic exploration of
bounded execution paths; each range is de�ned by a pair of in-order
concrete inputs where the �rst input represents the path where
symbolic execution starts and the second input represents the path
where symbolic execution ends; moreover, work stealing is used
for dynamic load balancing.

Most recent work by Qiu [28] introduces the idea of feasible
ranges for succinctly memoizing symbolic execution results where
the path conditions for all paths in a feasible range are satis�able.
Our idea of invalid ranges for Korat is inspired by Qiu’s idea of
feasible ranges for symbolic execution and complements it. We
could extend our work and support feasible ranges for Korat, so
the cost of running it to generate valid inputs in a feasible range
is reduced; for example, any candidate within a feasible range is
known to be valid and therefore its validity does not need to be
checked again; however, repOK may still need to be partially (and
in some cases fully) executed on it to determine what the next
candidate (which is also known to be feasible) is. Likewise, we
could introduce the use of invalid ranges in symbolic execution.

5.3 Parallel model checking
Funes et al. [12] introduced the idea of ranging for so�ware

model checking using Java PathFinder (JPF) [37], an explicit state
model checker; speci�cally, the exploration by the model checker is
ranged by a pair of in-order paths that de�ne the start and end of the
model checking run. Previous work on parallel randomized state
space search used multiple randomly generated start con�gurations
for JPF and ran them in parallel with the expectation that one of
them would �nd an erroneous state faster than the sequential run
of the model checker [9]. One of the earliest techniques for parallel
search for explicit state checking was parallel Murϕ, introduced
by Stern and Dill [34], and shown to provide approximately lin-
ear speedups. Swarm veri�cation [19] shows how to leverage
multi-core computation platforms in the context of the SPIN model
checker [18].

5.4 Incremental analysis
A number of incremental analyses re-use results from previous

runs to optimize subsequent runs, e.g., for test generation [17, 35],
symbolic execution [15, 36, 39], and model checking [2, 23, 32, 38].
�e key di�erence between our approach and previous work is to re-
use state-space exploration results, speci�cally about consecutive
invalid candidates, to optimize constraint solving. Our approach
shares the spirit of incremental SAT and con�ict-driven clause

learning [10] but works at a very di�erent level (Java predicates
versus CNF formulas).

6 CONCLUSION
�is paper introduced a novel approach to reduce the cost of

systematic testing using the Korat approach in certain application
scenarios. Our key insight is that sometimes Korat’s backtracking
search is repeated over the same state space across separate runs
of Korat, and an earlier run of the search can be summarized to
more e�ciently perform a later run. We introduced the idea of
invalid ranges which succinctly encode parts of the exploration
space, which do not contain any valid inputs but have to be explicitly
explored by the Korat search since it is unable to prune them. Our
approach directly prunes these parts in a future run of Korat over
the same input space. We developed our approach for two se�ings:
a sequential se�ing where the Korat search is run using one worker
(i.e., processing unit), and a parallel se�ing where the Korat search
is distributed to several workers. In the parallel se�ing, we build
on a previous technique for parallel Korat, namely SEQ-ON, and
integrate invalid ranges with it. An experimental evaluation using
a suite of standard subjects shows the e�cacy of our approach.
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