mctau: Bridging the Gap
between Modest and UPPAAL~*

Jonathan Bogdoll?, Alexandre David!,

Arnd Hartmanns?, and Holger Hermanns?

! Aalborg University, Department of Computer Science, Aalborg, Denmark
2 Saarland University — Computer Science, Saarbriicken, Germany

Abstract. MODEST is a high-level compositional modelling language for
stochastic timed systems with a formal semantics in terms of stochastic
timed automata, an overarching formalism of which several well-studied
models are special cases. The emphasis of MODEST is to make use of
existing analysis techniques and tools in a single-formalism, multiple-
solution approach. In this paper, we focus on networks of timed automata
as supported by UppPAAL. We report on extensions made to MODEST and
UprPAAL that allow the transformation of a rich subset of MODEST models
to UPPAAL timed automata and enable connections to further tools and
formalisms. We present our MODEST-to-UPPAAL tool chain mctau, which
allows both a fully automated analysis as well as model transformation,
and we compare its performance with the existing mcpta tool.

1 Introduction

MODEST, the “modelling and description language for stochastic timed sys-
tems” [5], is a compositional modelling language that combines expressive and
powerful syntax-level features with a formal semantics in terms of stochastic
timed automata (STA). STA span a rich spectrum of semantic models, support-
ing continuous and discrete probability distributions as well as nondeterminism.
Well-known submodels of STA are probabilistic timed automata (PTA) [13],
timed automata (TA) [1], and generalised semi-Markov processes (GSMP) [10].
Most of the submodels are easily identifiable on the syntactic level.

MODEST has been used in a wide variety of application studies, ranging from
wireless sensor networks [2,17] to architectural dependability models [4] and
industrial production scheduling [14]. The principle idea behind the formalism
and its supporting tools is to provide a single-formalism, multi-solution approach
to modelling and analysis, using existing analysis engines and algorithms where
available to avoid unnecessary reimplementations.

Started in 2008, the MODEST TOOLSET constitutes the second generation [6]
of tools with this philosophy and currently consists of (i) mepta [11,12], which
enables model checking of networks of PTA using the PRISM [16] probabilistic

* This work has been supported by the European Union FP7-ICT project Quasi-
modo, contract no. 214755, by the DFG as part of SFB/TR 14 AVACS and by the
DFG/NWO Bilateral Research Program ROCKS.

MODEST STA Y—* modes stmulation

T PTA » mcpta — PRISM model checking
ngpl}rLT;fal TA » mctau — UPPAAL model checking, visualisation
interface

Fig. 1. How the new mctau tool fits in the MODEST TOOLSET

model checker in the background, (ii) modes [4,11], a discrete-event simulator
that primarily targets GSMP models but in fact is enhanced to handle certain
nondeterministic models in a sound way, and (iii) mime as a graphical user
interface that seamlessly integrates the analysis tools into a MODEST source
code editor with syntax and error highlighting. The tools are usable and robust.

In this paper, we present a new member of the MODEST TOOLSET family:
mctau, providing visualisation and analysis of networks of timed automata. It
does so by connecting to the real-time model checker UPPAAL [3] (see Figure 1
for a toolset overview). Although mcpta already includes support for TA as a
special case of PTA, we will see that mctau allows a more efficient analysis; in
addition to this, the way we bridge several semantic gaps between MODEST and
UpPAAL will be of practical use beyond just the mctau tool.

2 Bridging the Gap

A connection between MODEST and UPPAAL had been planned for a long time [6],
but several fundamental differences have prevented this up to now:

Time constraints. Constraints on the flow of time are specified as location
invariants in UPPAAL, while MODEST uses deadlines (or urgency constraints [7]).
Deadlines are more flexible in parallel composition and synchronisation, easily
allowing, for example, a synchronising edge to be taken as soon as possible in all
components. While not every deadline can be transformed into a single invariant
(and vice-versa), we have recently shown how to transform all practically relevant
deadlines into invariants [11], and this transformation is implemented in mctau.

Assignments. The assignments associated to an edge in UPPAAL are performed
sequentially: z := y,y := x will result in x and y both having the same value.
In MODEST, variables are assigned new values in function of their previous ones
atomically. = := y,y := = will thus result in swapping = and y. UPPAAL 4.1.5
now implements this semantics as an option (-M at the command line and the
Modest checkbox in the option menu of the graphical interface).

Synchronisation. Both UPPAAL and MODEST support the notion of parallel
composition, where a number of independent processes run in parallel. How-
ever, the synchronisation mechanisms differ fundamentally: MODEST supports
a CSP/LOTOS-style multi-way synchronisation where processes synchronise on
edges with the same label that are part of their shared alphabet, while UPPAAL
provides CCS-style binary synchronisation where exactly two processes synchro-
nise on a matching pair of actions (e.g. a! and a?) and I/O-automata inspired
broadcast synchronisation that allows multiple receivers (a?) for one sender (a!).

Although it is possible, with some effort, to encode binary using only multi-
way synchronisation [15], we know of no way to do the opposite without in-
troducing additional intermediate states. We thus resolved this discrepancy by
adding multi-way synchronisation to UPPAAL 4.1.5 and extending MODEST with
broadcast and binary synchronisation. These extensions also open UPPAAL and
MODEST for a large number of further tool connections that were previously
infeasible such as connecting UPPAAL with CSP-style tools, notably CADP [9]
or PRISM.

3 The mctau Tool

mctau, at its core, performs the translation of MODEST models to the XML-based
input language of UPPAAL, including MODEST features such as user-defined
functions and data types. mctau is available as a command-line executable and
as a fully integrated analysis engine inside mime. It has two modes of operation:

Export mode: A .modest input file is transformed into a .xml file with the au-
tomata and a .q file with the properties to be analysed. These can be opened
in the UPPAAL graphical interface for analysis or further modification.

Analysis mode: UPPAAL is completely hidden from the user: The model trans-
formation as well as the analysis of the properties, using UPPAAL’s command-
line verifyta executable, is performed by mctau in a fully automated way.
This is also the way that mctau appears within mime.

Since MODEST is a text-based formalism while UPPAAL is based on a graphi-
cal automata notation, mctau incorporates a set of graph layout algorithms to
generate useable UPPAAL models.

Aside from TA, mctau can also cope with networks of PTA: When given a
model with probabilistic branching, mctau generates (and analyses) an overap-
proximation that is obtained by replacing all probabilistic with nondeterministic
branching (discarding branches with probability zero). This neither adds nor re-
moves paths through the model, but all probabilities are lost. Still, it is useful
for a fast qualitative analysis. mctau also replaces probabilistic properties by a
set of purely timed ones that can determine whether the probability is zero, one,
or somewhere within that range.

This handling of PTA models greatly improves the usability and applicability
of mctau since it allows the user to write a single model to subsequently use
three different tools—mctau, mcpta and modes—with vastly different background
technologies, all of that optionally from within the graphical interface of mime.

Tool availability. The MODEST TOOLSET 1.3.4, which includes mctau, and Up-
PAAL 4.1.5 are freely available for academic users at www.modestchecker.net
(reviewers: see Appendix C) and www.uppaal.org, respectively.

4 Evaluation

mctau is able to analyse (the nondeterministic overapproximations of) the three
original mepta PTA case studies [12], models unchanged. In all cases where mctau

Table 1. Results of mctau and mcpta for the probabilistic BRP model (16,2,1)

property ‘ Tar Taz Pa Ps P P2 Dmax
mctau | true true 0O 0 [0,1] [0,1] [0,1]
mcpta | true true 0 0 4.233-107% 2.645-107° 9.996-107"

Table 2. Performance of mctau and mcpta on the nonprobabilistic BRP model

standard properties time-bounded properties
tool model states time memory states time memory
mctau (16,2,1) 880 1s 27 MB 831 1s 19 MB
(using UppasL) (64,5,4) | 8317 2s 30 MB 8091 1s 21 MB
mcpta (16,2,1) | 3972 2s 167MB | 170371 20s 253 MB
(using PRISM) (64,5,4) | 304785 13s 187 MB | 4914666 284s 686 MB

reports probability 0 or 1, mcpta does so as well. For the BRP model in particular,
we see that whenever mctau reports [0, 1], the actual probability as reported by
mcpta is in |0, 1[, as shown in Table 1 (model parameters (N, MAX, TD) and
property names are as in [12]). This shows how mctau can be of great help in
debugging and sanity checking of probabilistic models.

The BRP model has also been studied as a pure TA model before [8] with
some properties that had not been transferred to the PTA model. We were able
to reconstruct that TA model in MODEST and check all properties with mctau.
The model is included in the MODEST TOOLSET download. We also compared
the performance of mctau and mcpta (using the digital clocks engine®) on a non-
probabilistic version of the original MODEST BRP model. Table 2 summarises the
results®; as expected (since mcpta/PRISM are not designed for nonprobabilistic
models), the more specialised tool shows significantly improved performance.

5 Conclusion

We have presented mctau, a tool providing a link between the MODEST and Up-
PAAL modelling formalisms. The newly established connection opens the door to
a powerful tool chain that gives MODEST modellers access to the editor and sim-
ulator of UPPAAL and reinforces the single-formalism, multi-solution approach
of MODEST. This approach might one day provide a possible solution to one of
the obstacles that, in our experience, new users seeking to apply model-checking
in their subject area face: the daunting number of different modelling languages
which makes for low flexibility and a steep learning curve.

mctau was only possible because of recent results and implementation efforts
that allowed the semantic gaps between the two formalisms to be overcome.
The implemented bridge spans a practically disturbing gap between CCS and

3 Use of PRISM’s game-based engine was not possible due to its restrictions concerning
the use of global variables and the access to other modules’ local variables.

4 Linux VM on Intel Core i5, /usr/bin/time -v for time and memory measurement;
“states” is the number of zones explored by UpPPAAL for mctau and the number of
reachable discrete states (including discretised clock valuations) for mcpta.

I/O automata on the one side and CSP and LOTOS on the other. The inclu-
sion of multi-way synchronisation in UPPAAL 4.1.5 is a key enabler for further
connections with prominent verification tools such as PrisSM or CADP.

UpPPAAL nowadays also contains an efficient statistical model checking en-

gine, which we currently do not make use of since it relies on an entirely new
and different semantics for timed automata. An investigation of the relationship
between this “stochastic” semantics and MODEST is planned as future work.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183-235 (1994)
Bar6 Graf, H., Hermanns, H., Kulshrestha, J., Peter, J., Vahldiek, A., Vasudevan,
A.: A verified wireless safety critical hard real-time design. In: WoWMoM. IEEE
2011

](Behrrglanm G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: SFM-RT 2004.
pp- 200-236. No. 3185 in LNCS, Springer (September 2004)

Bogdoll, J., Ferrer Fioriti, .M., Hartmanns, A., Hermanns, H.: Partial order meth-
ods for statistical model checking and simulation. In: FMOODS/FORTE. LNCS,
vol. 6722, pp. 59-74. Springer (2011)

Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans-
actions on Software Engineering 32(10), 812-830 (2006)

Bohnenkamp, H.C., Hermanns, H., Katoen, J.P.: MoTor: The Modest tool envi-
ronment. In: TACAS. LNCS, vol. 4424, pp. 500-504. Springer (2007)

Bornot, S., Sifakis, J.: An algebraic framework for urgency. Inf. Comput. 163(1),
172-202 (2000)

D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, J.: The bounded retransmis-
sion protocol must be on time! In: TACAS. LNCS, vol. 1217. Springer (1997)

. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the

construction and analysis of distributed processes. In: TACAS. LNCS, vol. 6605,
pp. 372-387. Springer (2011)

Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. Com-
munications in Statistics. Stochastic Models 3(3), 409438 (1987)

Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In:
FMCO. LNCS, vol. 6957, pp. 372-391. Springer (December 2010)

Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST. pp. 187-196. IEEE Computer Society (2009)

Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101-150 (2002)

Mader, A., Bohnenkamp, H.C., Usenko, Y.S., Jansen, D.N., Hurink, J., Hermanns,
H.: Synthesis and stochastic assessment of cost-optimal schedules. STTT 12(5),
305-318 (2010)

Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking the probabilistic
pi-calculus. In: QEST. pp. 169-178. IEEE Computer Society (2007)

Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems.
Ph.D. thesis, University of Birmingham (2002)

Yue, H., Bohnenkamp, H.C., Kampschulte, M., Katoen, J.P.: Analysing and im-
proving energy efficiency of distributed slotted Aloha. In: NEW2AN. LNCS, vol.
6869, pp. 197-208. Springer (2011)

Appendix

This appendix contains our plan for a potential oral presentation of the tool
paper, a screenshot of the mime GUI with mctau in use, information about tool
availability including an anonymous download link, and a selection of additional
material for the interested reviewer.

Please note that the appendix contains a separate bibliography; reference
numbers are thus distinct from and overlapping with those from the main paper.

A Presentation Plan

Our planned presentation consists of two main parts:

1. Introduction/Bridging the gap: A brief introduction to timed automata,
probabilistic timed automata and MODEST followed by an overview of the
MoDEST/UPPAAL discrepancies and how we resolve them.

2. Ezample/demonstration: A live demonstration of analysing the model of the
bounded retransmission protocol with mctau, including model debugging
with export to UPPAAL and a comparison with the results obtained from
mcpta.

A.1 Introduction/Bridging the Gap

We plan to start our presentation with a general and very brief introduction to
(probabilistic) timed systems and the MODEST language. The former already
includes the timed automata (TA) formalism, and we thus do not need to ex-
plicitly present the UPPAAL language since it consists for the most part of the
graphical representation of these automata. We then highlight the discrepancies
between the UPPAAL input formalism and MODEST as outlined in Section 2 and
how mctau overcomes these. This can be succinctly accomplished based on a
table similar to Table 3.

A.2 Example/Demonstration

The second part of our presentation is based on the probabilistic timed model
of the bounded retransmission protocol (BRP) that was already mentioned in
Section 4. We do not intend to show the full code of the MODEST BRP model
during our presentation. It is included in the MODEST TOOLSET download for
review, though. Instead, we will try to weave crucial aspects of the model into
the beginning of the presentation already (this possibility is one reason to use
the BRP case, see below for details) and merely highlight very specific parts
relevant to the properties under study in this second part of our presentation.
After a slide-based introduction of the protocol and the properties that will
be model-checked, including an intuition of the results we should expect for a
working protocol, we switch to mime (see Appendix B for a screenshot taken
after analysing a BRP model in mime) to continue in a “tool demonstration”

Table 3. Tabular summary of the language discrepancies and their resolution

UPPAAL MoDEST Resolution
Time constraints: | invariants deadlines transformation [4]
Assignments: atomic sequential extended UPPAAL
Synchronisation: | multi-way | binary + broadcast extended both

style. The mime user interface is fully scalable so that we can magnify the entire
interface to make it readable for the audience throughout the demonstration.

Our demonstration starts by pointing out a few crucial aspects of the BRP
model. The model that we load into mime will contain incorrect values for some
of the timing-related constants. After pointing out the meaning of these con-
stants, we use mctau for model checking, yielding results that run contrary to
the intuition that we explained before and clearly show that the protocol does
not work properly. We then proceed to use mctau’s export mode to obtain input
for UpPPAAL, which we load into the UpPPAAL GUI to find counterexamples for
the affected properties that show what is wrong with the model.

After correcting the model, model checking with mctau will give us results
that are in line with our expectations. We finally end the demonstration by
showing that these results are in line with those obtained from mcpta (as in
Table 1); if time allows, we can actually run mcpta to compute the true proba-
bilities, showing that this takes noticeably longer than using mctau on the same
model.

Going back to slides, the presentation itself ends with a summary of the
contributions of mctau and our extensions to UPPAAL and MODEST to (proba-
bilistic) timed model checking in general, in particular concerning the aspect of
further tool connections.

A.3 Reasons for Demonstrating the BRP
We chose the BRP case study for the demonstration part for several reasons:

— The protocol concept is easy to explain, seeing that it is the classic alternating-
bit protocol, a staple of computer networks lectures, with the addition of a
bound on the number of retransmissions.

— It has been studied and analysed with a wide range of different approaches
over the last two decades, making it relevant and also more probable that
the audience is familiar with it.

— The model has three parameters: N, the number of “chunks” that are to be
transferred; MA X, the bound on the number of retransmissions; and 7D, the
maximum transmission delay. These parameters make it possible to achieve
almost any desired size for the underlying state space, ranging from small
instances like (N, MAX, TD) = (16,2, 1) well-suited for a demonstration to
larger ones that can be used to emphasise the difference in runtime between
timed and probabilistic timed model checking.

— The constraints on the timing parameters obtained in [2] are a good case for
the necessity of timed model checking. In particular, they hold for the nonde-
terministic overapproximation of the PTA model, highlighting the usefulness
of TA model checking even for PTA models.

— The MODEST code for this model is easily modified to use either deadlines or
invariants and binary or multi-way synchronisation, allowing us to present
the bridging work that we have done in action.

— As mentioned, parts of this example, in particular code and automata for
a lossy channel with (nondeterministic) transmission delay, can already be
introduced at the very beginning of the presentation to illustrate MODEST
and TA.

B Screenshot

The following screenshot shows the mime graphical interface. The BRP model
from [5] had been loaded and the purely timed properties Ty, Ta, Ta1 and Tas
have been analysed with mctau. Using mcpta or modes instead of mctau for
this model merely requires selecting that engine in the drop-down box on the
upper right and running another analysis. The results could then be displayed
alongside those obtained from mctau, or exported to disk. More screenshots as
well as examples and documentation are available on the website (see next page).

& mime - brp.mctau.modest SRR X
Fle Edit View Model Tools Help
NEHP %2R T tox e
brp.mctau.modest = brp.mctaumodest (Analysis) - x
// Expected reachability properties Analysis type: [metau; Model-checking TA with UPPAAL ~ | [Canfigure
/7 maximum/m: mum e time unti: he transfer
Yy or unsuccessfully)" Experiments: MAX=2 N=16TD=1
P Run Analysis
Progress
process Sender()
bool bit: A) Details
10t (0..MAX) zoi
clock c; @ Parsing for MAX=2 N=16 TD=1
wo @ Automaton construction for MAX=2 N=16 TD=1
i1 invariant (c <= 0) new_file {= 1=0, rc=0 =}; B @ UPPAAL model construction for MAX=2 N=16 TD=1
“{“— (@ Model checking for MAX=2 N=16 TD=1
rWBen(L < W) megemt (= imifl =)) Messages
tf // send frame R A\ 10 properties were not exported because they are not currently supported
invariant(c <= 0) put_k (= £f=(i==1), 1f=(i==N), ak=bit, c=0 -
invariant(c <= IS) alt ¢
bit, re=0, ¢=0 =};
iz when(c == TS && rc < MAX)
J/ timeeut, retry
{= ro-rotl, o=0 -} brpmctaumodest (Results) ~ X
iz when(c == TS && rc == MAX && 1 < N)
// timeout, no retri Type of analysis: mctau: Model-checking TA with UPPAAL
s_nok {= rc=0, c=0 =
uZgent throw(erzor) Analysis options: Default
ii when(c == 1S & o Completed at: 12102011 165125
// timeout, no retries left P <
s_dk {= rc=0, c=0 =}: Results
t th
, e row(erzex) Property Result States stored States explored
¥ ~ MAX=2 N=16 TD=1
i:owhen(: == W) T1 True g2t 862
// file transmission successfully completed . .
urgent s_ok {= first_file done=true =i: T2 True 842 862
urgent break T a1 True 848 B62
} T a2 True 848 62
s -
caten error
J// Eile transfer did not succeed: wait, then restart with next file
invariant(c <= SYNC) when(c == S¥NC) - Do el
“| m N E
¥ Error List
Ln1, Col1

C Tool Availability

The regular download of the MODEST TOOLSET on www.modestchecker.net
requires a name and e-mail address. To allow an anonymous review, version
1.3.4 of the MODEST TOOLSET, including the models mentioned in this paper,
is available for reviewers without login at

http://www.modestchecker.net/v134spin/

Both the MODEST TOOLSET and UPPAAL are cross-platform; on non-Windows
systems, the MODEST TOOLSET requires a very recent version of the Mono run-
time® (> 2.10.1) and mime is currently not available.

D Additional Material

This section contains more detailed explanations for some of the aspects of mctau
and our extensions to MODEST and UPPAAL that cannot be part of the paper
proper due to the space restrictions. They are included here for the reviewers’
convenience.

D.1 Time constraints: Deadlines

The usefulness as well as the particularities of deadlines as used by MODEST are
explained in detail in [4]. As an example for the relationship between deadlines
and invariants, consider a location ! with invariant ¢ < 3 (where ¢ is a clock
variable). The invariant implies that time can pass while in [as long as ¢ < 3
holds. Deadlines, on the other hand, are associated to edges in an automaton,
and specify that some edge must be taken out of a location once the deadline of
one outgoing edge becomes satisfied. Invariant ¢ < 3 can thus be expressed as
deadline ¢ > 3 on some edge leaving I.

The invariants that we cannot transform into deadlines are mainly equality
comparison deadlines like ¢ = 3 and equivalents. Their semantics (as deadlines)
is not as obvious as it may seem: If a location affected by deadline ¢ = 3 is
entered when ¢ < 3, time can pass until ¢ == 3, then the location must be left.
However, if such a location is entered when ¢ > 3, the deadline has no effect
on the progress of time. A suitable invariant would thus have to prevent the
crossing of ¢ = 3 from below without restricting points of time beyond that.
This is not possible with a single invariant. A solution that adds additional
states would be possible (split all incoming edges depending on whether ¢ < 3
or ¢ > 3), but introduces an open clock constraint (a problem for mcpta/digital
clocks) and additional locations, which we want to avoid in order not to make
the state-space explosion problem even worse. We have not seen any practical
use for equality comparison deadlines so far.

Another transformation from timed automata with deadlines to UPPAAL
timed automata is presented in [3]. The set of deadlines allowed is restricted
compared to the ones that we support in MODEST. The transformation also

® http://www.mono-project.org/

makes use of features specific to UPPAAL such as committed and urgent loca-
tions, which our transformation [4] does not rely on.

D.2 Synchronisation

As an example for the different synchronisation modes, consider three processes
Py, P, and Ps in parallel composition:

CSP/MobpEesT-style: If a(P;) = {a,b}, a(P2) = {b,c} and a(P;) = &, then
Py (Py) is free to take action a (c), but P; and P must synchronise to take
action b.

CCS-style binary: If P, can perform a!, P can perform a? and P; can per-
form a? and action a is restricted (i.e. forced to synchronise), then either P;
and P, or P; and Ps; will synchronise on a.

Broadcast: In the same setting as for binary synchronisation, all three pro-
cesses will synchronise. If a(Ps) contained a, but a? were not enabled, P;
and P» could still synchronise on a without Ps.

The addition of binary and broadcast synchronisation to MODEST is not
needed to export MODEST models to UPPAAL. However, it allows the MODEST
modeller to use these synchronisation modes native to UPPAAL. Binary and
broadcast communication are very natural in some settings, and make it possible
to arrive at more concise models in such cases, so we are happy to have them
included and supported by the exporting mechanism now.

One reason why we have chosen the practical way of just implementing the
missing modes to resolve the synchronisation mode discrepancy is that we know
of no way to transform CSP-style multi-way synchronisation involving more than
one automaton into binary synchronisation without adding additional states.
This is because every binary synchronisation step cannot involve more than two
automata. Adding states (locations) in the automata will reinforce the state-
space explosion problem. Any encoding we can think of will split edges and
hence increase the size at least linear in the size of the original component
automata. When interleaving them, the increase becomes multiplicative, at least.
But even so, it is as yet unclear (to us) whether locations can be added in a
semantically sound way, in light of unwanted interleavings between automata
running in parallel, even if features such as UPPAAL’s committed locations are
used.

Finally, our list of tools to connect to in the future is very incomplete. It
would still be incomplete if we also added LTSA [6] as an additional CSP-style
tool and the Edinburgh CWB [7] and CWB-NC [1] as additional examples for
CCS-style tools.

D.3 Graph layout

The automatic graph layout performed by mctau is based on the Graph# li-
brary®, which we adapted for timed automata will all their location and edge

6 http://graphsharp.codeplex.com/

action put, get;
process Channel() {
clock c;
put {= c = 0 =};
invariant(c <= 2) alt {
1 oget
: tau
}; Channel() }

Fig.2. A MoODEST process and its UPPAAL automaton

labels. Figure 2 shows a simple communication channel in MODEST and the
UPPAAL automaton generated by mctau based on the LinLog layout algorithm.

D.4 Overapproximation of Probabilistic Choices

To illustrate the process of determining whether a probabilistic property in a
PTA is surely 0 or 1, consider property Ppax(Oe). This property determines
the maximum probability (over all schedulers) of eventually reaching a state
satisfying expression e. After replacing probabilistic by nondeterministic choices,
this property is replaced by V[—e and V{e: If the first property is satisfied,
the original probability must be zero; if the second property is satisfied, it must
be one; otherwise, it may be any number in [0, 1].

References

1. Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In: CAV. LNCS, vol.
1102, pp. 394-397. Springer (1996)

2. D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, J.: The bounded retransmis-
sion protocol must be on time! In: TACAS. LNCS, vol. 1217. Springer (1997)

3. Gomez, R.: A compositional translation of timed automata with deadlines to uppaal
timed automata. In: FORMATS. LNCS, vol. 5813, pp. 179-194. Springer (2009)

4. Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In:
FMCO. LNCS, vol. 6957, pp. 372-391. Springer (December 2010)

5. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST. pp. 187-196. IEEE Computer Society (2009)

6. Magee, J., Kramer, J.: Concurrency — state models and Java programs (2nd ed.).
Wiley (2006)

7. Stevens, P.: A practical introduction to games, infinity and the Edinburgh Concur-
rency Workbench. In: FIW. pp. 35-36. IOS Press (2005)

