
A compositional Minimization Approach for
Large Asynchronous Design Verification

Hao Zheng1, Emmanuel Rodriguez, Yingying Zhang1, and Chris Myers2

1 University of South Florida, Tampa FL 33620, USA,
zheng@cse.usf.edu, yingyingz@mail.usf.edu>

2 University of Utah, SLC UT 84112, USA
myers@ece.utah.edu

Abstract. This paper presents a compositional minimization approach
with efficient state space reductions for verifying non-trivial asynchronous
designs. These reductions can result in a reduced model that contains the
exact same set of observably equivalent behavior in the original model,
therefore no false counter-examples are produced at the end of verifica-
tion on the reduced model. This approach allows designs that cannot
be handled monolithically or with partial-order reduction to be verified
without difficulty. The experimental results show significant scale-up of
the compositional minimization approach using these reductions on a
number of large asynchronous designs.

Keywords: model checking, compositional verification, minimization,
abstraction

1 Introduction

Compositional verification is essential to address the state explosion problem in
model checking large systems. The compositional methods can be roughly classi-
fied into compositional reasoning or compositional minimization. Compositional
verification based on assume-guarantee style reasoning [8, 13, 2, 14, 18] does not
construct the global state space. Instead, verification of a system is broken into
separate analyses for each module of the system. The result for the entire system
is derived from the results of the verified individual modules. When verifying each
module, assumptions about the environments with which the modules interact
are needed for sound verification, and must be discharged later.

The success of compositional reasoning relies on the discovery of appropri-
ate environment assumptions for every module. This is typically done by hand.
If the modules have complex interactions with their environments, generating
accurate environment assumptions can be challenging. Therefore, the require-
ment of manually finding assumptions has been a factor limiting the practical
use of compositional reasoning. In recent years, various approaches to auto-
mated assumption generation for compositional reasoning have been proposed.
In the learning-based approaches, assumptions represented by deterministic fi-
nite automata are generated with the L∗ learning algorithm and analysis of local

II

counter-examples [20, 1, 9, 11, 5]. The learned assumptions can result in orders of
magnitude reduction in verification complexity. However, these approaches may
generate assumptions with too many states and fail verification in some cases
[20, 1]. [22] presents an automated interface refinement method where the models
of the system modules are refined, and the extra behavior is removed by extract-
ing the interface interactions among these modules. Although the capability of
these methods has been demonstrated by verifying large examples, it is difficult
for them to handle inherently global properties such as deadlock freedom.

Compositional minimization [4, 12, 16], on the other hand, iteratively con-
structs the local model for each component in a system, minimizes it, and com-
poses it with the minimized models of other components. Eventually, a reduced
global model is formed for the entire system where verification is performed. To
contain the size of the intermediate results, user-provided context constraints
are required. The need for the user-provided context constraints may also be a
problem because the used-provided constraints may be overly restrictive, thus
resulting in real design errors escaping detection. Similar work is also described
in [6, 7].

The key to the success of compositional minimization is state space reduction.
In most existing work, reduction is conservative in that more behavior may be
introduced, but no essential behavior may be removed during reduction. This is
necessary since no real errors can be missed when verifying the reduced model.
However, false errors may be introduced by reduction at the same time. When
an error is found while verifying such a reduced model, it needs to be checked
whether this error is real, typically done on the concrete model. This can be very
time-consuming. If reduction is too conservative, the number of false errors may
become too excessive, and checking these false errors can become the bottleneck.

In [27, 28], methods are described for compositionally verifying asynchronous
designs based on Petri-net reduction. These methods simplify Petri-net models
of asynchronous designs either following the design partitions or directed by the
properties to be verified, then verification is done on the reduced Petri-nets.
However, these methods are limited to certain types of Petri-nets, and not easily
extended to other formalisms.

This paper presents a number of state space reductions that can be used
with compositional minimization. In this method, a design is modeled as a par-
allel composition of state graphs derived from the high-level descriptions of the
components in a design. Before composing the component state graphs to form
a global model for verification, these state graphs are reduced to lower the com-
plexity. The reductions remove certain state transitions and states from a state
graph in such a way that the observable behavior on the interface remains the
same. At the end, a reduced state graph for the entire design, which is equivalent
to the concrete model of the design in terms of observable behavior, is produced
for verification. This method is sound and complete in that the reduced model
is verified to be correct if and only if the concrete model is correct.

The reduction method presented in this paper is similar, in some degree, to
the partial order reduction [15] as both try to identify and remove certain tran-

III

sitions to eliminate equivalent paths. Partial order reduction determines the in-
dependent transitions such that the order of executing these transitions does not
affect the verification results, and removes all but one independent transitions in
each state during the state space traversal to avoid generating states and tran-
sitions that correspond to some equivalent paths. However, determining which
transitions are independent requires the information of the global state space,
which is not available during the state space traversal, therefore the independent
transitions are computed conservatively to ensure soundness of the verification
results. This causes partial order reduction less effective or even useless in some
situations. On the other hand, our method can effectively remove all transitions
that correspond to equivalent paths in state space models because it considers
the generated state space models where the necessary information is available
for such reduction. Furthermore, our method can also remove states that do not
affect the observable behavior after the equivalent paths are removed, while par-
tial order reduction only tries to avoid generating the equivalent paths. Another
difference is that partial oder reduction is applied to the whole design, while the
method in this paper builds a reduced global state space model compositionally.

This paper is organized as follows. Section 2 gives a brief overview of the mod-
eling and verification of asynchronous designs. Section 3 presents the set of state
space reductions for our compositional verification method. Section 3.1 describes
a state space reduction approach that preserves the same observably equivalent
behavior. Section 3.2 describes a set of techniques that remove redundant states
and state transitions to augment the reduction presented in Section 3.1. Section 4
demonstrates our method on a number of non-trivial asynchronous design ex-
amples, and analyzes the obtained results. The last section concludes the paper
and points out some future work that can improve this method.

2 Preliminaries

2.1 State Graphs

This paper uses state graphs (SGs) to model asynchronous systems. The defini-
tion of state graphs is given as follows.

Definition 21 (State Graphs) A state graph G is a tuple (A, S,R, init) where

1. A is a finite set of actions,
2. S is a finite non-empty set of states,
3. R ⊆ S ×A× S is the set of state transitions,
4. init ∈ S is the initial state.

For an SG, A = AI ∪ AO ∪ AX . AI is the set of actions generated by an
environment of a system such that the system can only observe and react. AO
is the set of actions generated by a system responding to its environment. AX
represents the internal behavior that is invisible at the interface, and it is usually
denoted as ζ. In the above definition, S also includes a special state π which

IV

denotes the failure state of a SG, and it represents violations of some prescribed
safety properties. The failure state π does not have any outgoing transitions. The
set of actions enabled at a state s ∈ S is denoted as enb(s) = {a | (s, a, s′) ∈ R}.
The set of state transitions leaving a state s, {(s, a, s′) ∈ R}, is denoted by
out(s). In the remainder of this paper, R(s, a, s′) also denotes that (s, a, s′) ∈ R.

A path ρ of G is a sequence of alternating states and actions of G, ρ =
(s0, a0, s1, a1, s2, · · ·) such that si ∈ S, ai ∈ A, and (si, ai, si+1) ∈ R for all
i ≥ 0. A state sj ∈ S is reachable from a state si ∈ S if there exists a path
ρ = (si, · · · , sj , · · ·) in G. A state s is reachable in G if s is reachable from
the initial state init. The trace of path ρ, denoted by σ(ρ), is the sequence of
actions (a0, a1, · · ·). Given a trace σ(ρ) of a path ρ = (s0, a0, . . . , si, ai, . . .), its
finite prefix, denoted by σ(ρ, i), is (a0, . . . , ai). Two traces σ = (a0, a1, · · ·) and
σ′ = (a′0, a

′
1, · · ·) are equivalent, denoted by σ = σ′, iff ∀i≥0 ai = a′i. The set of

all paths of G forms the language of G, denoted by L(G).
Given a trace σ = (a0, a1, . . .), its projection onto A′ ⊆ A, denoted by σ[A′],

is obtained by removing from σ all the actions a 6∈ A′ as shown below.

σ[A′] =
{
a0 ◦ σ′[A′] if a0 ∈ A′,
σ′[A′] otherwise.

where σ′ = (a1, ...), and ◦ is the concatenation operator.
Given two paths, their equivalence is defined as follows.

Definition 22 Let ρ = (s0, a0, s1, a1, · · ·) and ρ′ = (s′0, a
′
0, s
′
1, a
′
1, · · ·) be two

paths of G. ρ and ρ′ are equivalent, denoted as ρ ∼ ρ′, iff σ(ρ) = σ(ρ′).

The SG of a system is obtained by composing the component SGs asyn-
chronously. Asynchronous parallel composition is defined as follows. This defi-
nition is similar to that in [3] except that more rules are created for situations
involving π. Given G1 = (A1, S1, R1, init1) and G2 = (A2, S2, R2, init2), the
parallel composition of G1 and G2, G1‖G2 = (A, S,R, init), is defined as fol-
lows.

1. A = A1 ∪ A2,
2. S ⊆ S1\π × S2\π ∪ {π}.
3. R ⊆ S ×A× S such that all the following conditions hold:

(a) For each ((s1, s2), a, (s′1, s
′
2)) ∈ R,

i. a ∈ A1 −A2 ⇒ R1(s1, a, s′1) ∧ s′2 = s2,
ii. a ∈ A2 −A1 ⇒ R2(s2, a, s′2) ∧ s′1 = s1,
iii. a ∈ A1 ∩ A2 ⇒ R1(s1, a, s′1) ∧R2(s2, a, s′2),

(b) For each ((s1, s2), a, π) ∈ R,
i. a ∈ A1 −A2 ⇒ R1(s1, a, π),
ii. a ∈ A2 −A1 ⇒ R2(s2, a, π),
iii. a ∈ A1 ∩ A2 ⇒ ((R1(s1, a, π) ∧ a ∈ enb(s2)) ∨ ((R2(s2, a, π) ∧ a ∈

enb(s1)),
4. init = (init1, init2).

V

In the above definition, the composite state is the failure state if either com-
ponent state is the failure state. When several components execute concurrently,
they synchronize on the shared actions, and proceed independently on their in-
visible actions. If any individual SG makes a state transition to the failure state,
there is a corresponding state transition to the failure state in the composite SG.
In the actual implementation, when composing two SGs, a reachability analysis
algorithm is performed from the initial composite state following the definition
for transition relation R, and therefore, the resulting composite SG contains only
the reachable states.

2.2 Correctness Definition

A path is referred to as a failure if it leads to the failure state π. The set of
all failures in G is denoted as F(G) such that F(G) ⊆ L(G) holds. A system is
correct if F(G) = ∅.

Given a failure ρ′ = (s′0, a0, · · · , s′i, ai, π), the non-failure prefix of its trace is
σ(ρ′, i). If another path ρ has the same non-failure prefix of ρ′, ρ is also regarded
as a failure. In such case, path ρ is said to be failure equivalent to ρ′.

Definition 23 Let ρ = (s0, a0, . . .) and ρ′ = (s′0, a′0, . . .) be two paths. If
∃i>0 σ(ρ, i) = σ(ρ′, i) ∧ s′i+1 = π holds, then ρ is failure equivalent to ρ′, de-
noted as ρ ∼F ρ′.

The definition of the abstraction relation between two SGs is given as follows.

Definition 24 (Abstraction) Given SGs G and G1, G1 is an abstraction of
G, denoted as G � G1, if and only if the following conditions hold:

1. AI = AI1 and AO = AO1 .
2. For every path ρ ∈ L(G), there exists a path ρ1 ∈ L(G1) such that ρ[A′] ∼

ρ1[A′] or ρ[A′] ∼F ρ1[A′] where A′ = AI ∪ AO.

The abstraction relation defines that for any path in G, there exists a path in
G′ such that they are observably equivalent. For any failure in G, there exists
an equivalent failure in G′.

The equivalence relation between two SGs is more restricted than the abstract
relation.

Definition 25 (Equivalence) Let G and G1 be SGs. G is equivalent to G1,
denoted as G ≡ G1, if and only if G � G1 and G1 � G.

The equivalence relation defines that two SGs contain the same set of ob-
servably equivalent paths. Therefore, if G ≡ G1, the following property holds.

F(G) = ∅ ⇔ F(G1) = ∅. (1)

Intuitively, the above property states that the concrete model G is correct if G1

is correct, and vice versa.

VI

After a SG is generated, model checking can be applied for various properties
to decide if they hold. In particular, our method checks the properties of safety
and deadlock freedom of an asynchronous design. The correctness of a design is
defined as the absence of failures caused by the violations of these properties.
The failure state π in our method can be used to capture violations of various
safety properties. A design is safe if π is unreachable. A design is said to deadlock
if it cannot make progress in some state. It is defined as follows.

Definition 26 (Deadlock) A SG is said to have a deadlock if ∃s∈S enb(s) = ∅.

A design is free of deadlokc if no deadlock exists.

3 State Graph Reductions

In this method, it is assumed that a design consists of n components, the state
graphs Gi(1 ≤ i ≤ n) for these components are obtained somehow. The state
graph for the whole design is obtained by composing the two component SGs in
parallel at a time for all components. However, directly composing Gi for verifi-
cation defeats the purpose of compositional construction in that the interleaving
of the invisible state transitions in Gi can explode quickly during the parallel
composition. Therefore, this section presents a number of state space reductions
to simplify the component SGs and the intermediate SGs generated during the
composition process before they are composed to control the complexity. The
reduced state graphs are observably equivalent to the original ones, which im-
plies that any properties hold or fail in the reduced SGs if, and only if, they hold
or fail in the original ones. These reductions remove the redundant paths from
the original SG but do not introduce any extra paths that do not exist in the
original SG. They play an important role in compositional minimization. The
end of this section compares these reductions with another existing state soace
abstraction approach.

3.1 Observably Equivalent Reduction

Given a component, some of its outputs may bcome invisible to its neighbors
when it is plugged into a larger system. In this case, the corresponding state
transitions on these outputs in its SG can be converted to invisible transitions.
The traditional abstraction techniques collapse the invisible state transitions into
single states [6]. This may cause extra behaviors and thus may introduce false
failures. This section provides a different reduction approach that compresses a
sequence of invisible state transitions into a single visible state transition. This
approach has certain desirable features over the previous approaches.

Let (si, ζ, si+1, ζ, · · · , sj−1, ζ, sj , aj , sj+1) be a subpath of a path in a SG G.
After reduction, the whole subpath is replaced with state transition (si, aj , sj+1).
This reduction is referred to as observably equivalent reduction. This reduction
is different from the previous approaches in the following ways.

VII

1. Since the sequence of invisible state transitions on a path is replaced by
a visible state transition, the number of reachable states of the reduced G
may be reduced if some states have all their incoming state transitions on the
invisible action. However, this may not always be the case, and the number
of state transitions may be increased significantly.

2. This reduction shortens the existing paths, but no new paths are created.
Therefore, no new failure traces are introduced.

3. Nondeterminism may be introduced into the SG after reduction. Consider
two subpaths (si,ζ,· · · , sj−1,ζ,sj ,aj ,sj+1) and (si,ζ, · · · ,sk−1, ζ, sk, aj , sk+1).
They are reduced to (si, aj , sj+1) and (si, aj , sk+1), respectively. This causes
nondeterminism even though the original SG is deterministic. However, the
nondeterministic transitions may be eliminated if sj+1 or sk+1 is redundant
as described in the next section.

Let reduce(G) be a procedure for the observably equivalent reduction on
a SG G as shown in Algorithm 1. The SG produced by reduce(G) in Algo-
rithm 1 inherits every element of G except the updated R and S. The algorithm
reduce(G) checks each invisible state transition (s1, a1, s2) in G, and calls an-
other function oer(G, s1, s2) if the start state s1 of that invisible state transition
has at least one incoming state transition that is visible. Function oer(G, s1, s2),
as shown in Algorithm 2, searches forwards bypassing each invisible state tran-
sition from s2 in the depth-first manner until a visible transition or the failure
state π is encountered. Then, a new transition is created to replace the sequences
of invisible state transitions, and added into R. Adter all invisible transitions are
handled, they are removed from G. Consequently, some other states and transi-
tions may become unreachable, and they are also removed from G.

Algorithm 1: reduce (G)
foreach (s1, a1, s2) ∈ R do1

if a1 = ζ ∧ s2 6= π then2

if ∃(s,a,s1)∈R a 6= ζ then3

oer(G, s1, s2);4

Rmove all invisible state transitions from G;5

Remove unreachable states and state transitions from G;6

Fig. 1 shows an example how a SG in Fig. 1(a) is reduced by the observably
equivalent reduction to become the one as shown in Fig. 1(b). In this example,
suppose all invisible transitions are denoted by ζ. Then, for each visible transition
in states si+1, sj+1, and sk+1, a new transition on the same action is created for
states si, sj , and sk, respectively. Four new state transitions are added to preserve
the same observably behavior. In this case, only three invisible transitions are
removed. Therefore, without further reduction, the reduced SGs can actually
be more complex with more transitions added. In the next section, redundancy

VIII

Algorithm 2: oer (G, s1, s2)
foreach (s2, a2, s

′
2) ∈ R do1

if a2 = ζ ∧ s′2 6= π then2

oer(G, s1, s
′
2);3

else4

R = R ∪ {(s1, a2, s
′
2)};5

return;6

si

s j

sk

si+1

s j+1

sk+1

ak ak

a j

aiai

a j

ζ

ζ

ζ ai+1

a j+1

ak+1

si

s j

sk

si+1

s j+1

sk+1

ak ak

a j

aiai

a j

ai+1

a j+1

ak+1

ak+1

a j+1

ai+1

ak

(a) (b)

Fig. 1. (a) An example SG with invisible state transitions. (b) The SG from (a) after
the observably equivalent reduction.

in the SGs is defined, and algorithms are described to identify and remove the
redundancy to really reduce the complexity of the SGs.

The following lemma asserts that reduce(G) is equivalent to G.

Lemma 1. Given a SG G, G ≡ reduce(G).

Proof: It is straightforward to see that for every path ρ in G, there exists a path
ρ′ in reduce(G) such that ρ ∼ ρ′ or ρ ∼F ρ′. Conversely, for every path ρ′ in
reduce(G), there exists a path ρ in G such that ρ′ ∼ ρ or ρ′ ∼F ρ. This satisfies
the conditions of the equivalence relation, therefore G ≡ reduce(G).

3.2 Redundancy Removal

From the example shown in the last section, it can be seen that the observably
equivalent reduction can introduce nondeterminism. Nondeterminism exists if
there are two state transitions (s, a, s1) and (s, a, s2) such that s1 6= s2. This is
a result from reduction while preserving observable equivalence. However, the
introduced nondeterminism can potentially contain redundancy, and removing
the redundancy can simplify the complexity of SGs.

If the failure state is involved in nondeterminism, redundant state transitions
are identified based on the following understanding: if an action in a state may
or may not cause a failure nondeterministically, it is always regarded as causing

IX

si

s j

sk

si+1

s j+1

a j

aiai

a j

ζ

ζ

π

si

s j

sk

si+1

s j+1

a j

aiai

a j

π

a j

ai
si

s j

si+1

s j+1

a j

aiai

π

a j

ai

(a) (b)

Fig. 2. (a) An example SG. (b) The SG from (a) after the observably equivalent reduc-
tion. (c) The SG from (b) after removing the failure equivalent transition (sj , aj , sk)
and the unreachable state.

a failure. It is formalized as failure equivalent state transitions in the following
definition.

Definition 31 Given two state transitions (s, a1, s1) and (s, a2, π) of a SG,
(s, a, s1) is failure equivalent to (s, a, π) if a1 = a2.

The failure equivalent transitions are redundant in that their existence does
not affect the verification results, therefore they can simply be removed. After
removing the failure equivalent state transitions, it is possible that some other
states become unreachable, therefore leading to more reduction.

The following lemma states that the SG resulting from removing failure
equivalent transitions is equivalent to the original SG.

Lemma 2. Let G and G′ be a SG and the one after removing failure equivalent
transitiions. G ≡ G′.

Proof : There are two cases to consider. In the first case, for every path ρ in G,
there exists a path ρ′ in G′ such that ρ ∼ ρ′ or ρ ∼F ρ′ according to Definition 31.
In the second case, for every path ρ′ in G′, there exists a path ρ in G such that
ρ ∼ ρ′ or ρ ∼F ρ′, also according to Definition 31. Therefore, G ≡ G′ holds.

Fig. 2 shows an example of failure equivalent transitions. Fig. 2(a) is an
example SG. After observably equivalent reduction is applied, the reduced SG is
shown in Fig. 2(b). In this reduced SG, transition (sj , aj , sk) is failure equivalent
to (sj , aj , sπ). After removing this failure equivalent transition, state sk becomes
unreachable, and is also removed including all its outgoing transitions. The final
reduced SG is shown in Fig. 2(c).

Next, a restricted case of redundancy is described. Let incoming(s) be the
set of state transitions (s′, a, s) such that R(s′, a, s) holds.

Definition 32 Let G be a SG, and s, s1, and s2 are states of G. If the following
conditions hold, then one of s1 and s2 is redundant.

X

– For every (s, a, s1) ∈ incoming(s1), there exists a (s, a, s2) ∈ incoming(s2).
– For every (s, a, s2) ∈ incoming(s2), there exists a (s, a, s1) ∈ incoming(s1).

If such redundant states exist, one of them and its incoming and outgoing tran-
sitions can be removed as follows. Suppose s1 is selected to remove.

– For each (s1, a1, s
′
1) ∈ outgoing(s1), add (s2, a1, s

′
1) into R.

– Remove all state transitions in incoming(s1) and outgoing(s1).
– Remove s1.

Therefore, removing redundant states always results in a smaller number of
states and state transitions. It is also obvious to see that G ≡ G′ where G′ is
the SG after redundant states are removed from G.

In the remaining part of this section, a more general definition of redundancy
is given by checking all possible behaviors originating from two states. Basically,
if all possible behaviors originating from these two states are equivalent, these
two states are regarded as equivalent. Therefore, one of them is redundant, and
can be removed. The state equivalence is formally defined as follows.

Definition 33 Let s and s′ be two states of a SG. s and s′ are equivalent,
denoted as s ≡ s′, if the following conditions hold.

– For each path ρ = (s0, a0, s1, a1, . . . ,) such that s0 = s, there exists another
path ρ′ = (s′0, a0, s

′
1, a1, . . . ,) such that s′0 = s′, ρ ∼ ρ′ or ρ ∼F ρ′.

– For each path ρ′ = (s′0, a0, s
′
1, a1, . . . ,) such that s′0 = s′, there exists another

path ρ = (s0, a0, s1, a1, . . . ,) such that s0 = s, ρ ∼ ρ′ or ρ ∼F ρ′.

Fig. 3 shows two examples of SGs which contain equivalent states that possi-
bly result from the reduction described in the previous section. In Fig.3(a), there
are two loops. State si on one loop is equivalent to state s′i on the other loop
since the paths out of these states are equivalent. Similarly, the successor states
of these two states are also equivalent. And we can find out that every state
in one loop is equivalent to a corresponding state in the other loop. Fig. 3(b)
shows a different case where equivalence exists. It can be shown that state s0
is equivalent to sk since each of these two states is the starting state of a path,
and these two paths are equivalent.

The above observation directly leads to an algorithm to find equivalent states.
To simplify the presentation, assume a SG with AX = ∅ after observably reduc-
tion is done. The algorithm works as follows. Initially, the set Eq of all pairs of
states is found such that for each (s, s′) ∈ Eq, the following conditions hold.

– ∀(s,a,s1)∈outgoing(s)∃(s′,a′,s′1)∈outgoing(s′) a = a′.
– ∀(s′,a′,s′1)∈outgoing(s′)∃(s,a,s1)∈outgoing(s) a = a′.

Two states are obviously not equivalent if one has some enabled action that is
not enabled in another state. This step excludes these obviously inequivalent
states, and keeps the pairs that are potentially equivalent. Then, the algorithm

XI

al

ak

a0a0

ak

Si

Sl S′l

S′i

S0

al

S′l

a0

ai

aj
a0

ai

aj

S0

Sj

Sl
S′j

Sk

(a) (b)

Fig. 3. Examples of equivalent states that can be resulted from reductions. States si

and s′i in (a) and s0 and sk in (b) are equivalent since the paths coming out of these
states are equivalent.

iteratively removes from the set Eq any paris (s, s′), until a fixpoint is reached,
if one of the following conditions holds

∃s1∈succ(s)∀s′1∈succ(s′) (s1, s′1) 6∈ Eq (2)

∃s′1∈succ(s′)∀s1∈succ(s) (s1, s′1) 6∈ Eq (3)

where succ(s) includes all states that are reachable in one transition from s.
Finally, if Eq is not empty, then states in every pair (s, s′) ∈ Eq are equivalent.
The correctness of the above algorithm is stated and proved in the following
lemma.

Lemma 3. For each pair (s, s′) ∈ Eq, s ≡ s′.

Proof: Suppose (s, s′) is an arbitrary pair in Eq.
Let ρ = (s0, a0, s1, a1, . . .) be an arbitrary path such that s0 = s. Since

(s, s′) ∈ Eq, there exists (s′, a0, s
′
1) ∈ outgoing(s′) corresponding to (s, a0, s1).

Additionally, (s1, s′1) ∈ Eq because (s, s′) ∈ Eq. Therefore, we can draw the
same conclusion for (s1, s′1). Repeat the above steps recursively, we can construct
another path ρ′ = (s′, a0, s

′
1, a1, . . .), and it is straightforward to see that for any

path from s, there is another path ρ′ such that ρ ∼ ρ′.
Next, let ρ′ = (s′0, a0, s

′
1, a1, . . .) be an arbitrary path such that s′0 = s′. By

following the above steps similarly, we can conclude that for any path from s′,
there is another path ρ such that ρ ∼ ρ′.

Therefore, for every pair (s, s′) ∈ Eq, s ≡ s′ by Definition 33.
If Eq(s, s′) is not empty, for every pair (s, s′) in the set, either s or s′ and

its outgoing transitions can be safely removed, and its incoming transitions are
re-directed to s′ or s. In this case, the interface behavior of the transformed SG
remains the same as that of the original one according to the definition of the

XII

al

ak

a0

S0

Si

Sl

aj

ai

Sj

Sj

S0

a0

(a) (b)

Fig. 4. SGs for the examples with redundant states in Fig. 3 after being reduced.

state equivalence. The examples shown in Fig. 3 after being reduced are shown
in Fig. 4.

3.3 Comparison Between Reduction and Abstraction

Efficient and effective state space reductions are key to success of compositional
minimization. In [26], a different abstraction technique is presented. This section
briefly compares it with the presented reductions in this paper.

The state-based abstraction in [26] removes every invisible state transition
(si, ζ, sj) ∈ R from an SG, and merges si and sj to form a merged state sij .
All state transitions entering si and sj now enter sij , and all state transitions
leaving si or sj now leave sij . To preserve failure traces, if sj is the failure
state π, then the merged state sij is also the failure state. This abstraction can
remove all invisible state transitions from an SG, which is illustrated in Fig. 5. It
is efficient to simply remove one invisible transition at a time without checking
any conditions as required in the paper. However, it may introduce a lot of extra
behavior including failures. In Fig. 5(b), there is a path ρ = (. . . , ak, sij , ai, . . .)
that does not exist in the SG in Fig. 5(a). This extra path causes a false failure
in the final reduced SG.

The observably euivalent reduction presented in this paper removes invisible
state transitions while keeping the exact same set of observable paths in the
original SG. Another example of this reduction is shown in Fig. 5(c). For an
invisible state transition (si, ζ, sj) ∈ R, this reduction adds a new state tran-
sition (si, aj , sh) into R for every (sj , aj , sh) ∈ outgoing(sj). Then, it removes
(si, ζ, si+1). In Fig. 5(a), there exists a path ρ = (. . . , si, ζ, sj , aj , sh, . . .), and in
Fig. 5(c) there exists a path ρ′ = (. . . , si, aj , sh, . . .), and ρ[A′] ∼ ρ′[A′] where
A′ = AI ∪AO. For all other paths that do not involve (si, ζ, si+1), they are pre-
served after the reduction. This reduction does not introduce any extra paths
that do not exist in the original. On the other hand, it may introduce a large
number of redundant paths that may cause the reduced SG to be much larger

XIII

��

� �

��

� �

π
ζ

��

��

�����

� �
π

��
��

��

� �

��
� �

π ��

��

� �

(a) (b) (c)

Fig. 5. Comparison of a traditional state space abstraction technique with the ob-
servably equivalent reduction. (a) An example SG. (b) The SG after the state space
abstraction. (c) The SG after the observably equivalent reduction.

than the original one. Fortunately, the redundancy removal techniques presented
in this paper can help to remove a lot of these redundancy introduced by the
observably equivalent reduction to significantly simply the complexity of SGs.

4 Experimental Results

We have implemented a prototype of the automated compositional verification
with the reductions described in this paper in a concurrent system verification
tool Platu, an explicit state model checker. This model checked is programmed
in Java, and can perform traditional depth-first search and compositional veri-
fication. Experiments have been performed on several non-trivial asynchronous
circuit designs obtained from previously published papers. To verify a design us-
ing the compositional minimization method in this paper, all components in the
design need to be converted to SGs first. The component SGs can be obtained
using a compositional reachability analysis method as shown in [25]. Detailed de-
scription of this method is out of scope of this paper. In this paper, it is assumed
that the component SGs are already obtained somehow.

The first three designs are a self-timed first-in-first-out (FIFO) design [17],
a tree arbiter (ARB) of multiple cells [10], and a distributed mutual exclusion
element (DME) consisting of a ring of DME cells [10]. Despite all these designs
having regular structures to be scaled easily, the regularity is not exploited in our
method, and all components are treated as black boxes. The fourth example is a
tag unit circuit (TU) from Intel’s RAPPID design [21]. This example is an un-
optimized version of the actual circuit used in RAPPID with higher complexity,
which is more interesting for experimenting with our methods. The fifth example
is a pipeline controller (PC) for an asynchronous processor TITAC2 [24]. The
last example is a circuit implementation of a memory management unit (MMU)
from [19]. All examples are too large for traditional monolithic approaches to
complete on a typical workstation.

XIV

Table 1. Comparison of the results from using the monolithic, partial-order reduction
and the reduction methods. Time is in seconds, and memory is in MBs. |S| is the
numbers of states found. For the results under CompMin, |S| is the number of states
of the largest SG encountered during the whole course of compositional minimization.

Designs Monolithic SPIN CompMin

Name |V | Time Mem |S| Time Mem |S| Time Mem |S|
fig3a 6 0.044 2.7 20 0 2.195 20 0.037 3.14 10

arbN3 26 0.315 2.4 3756 0.015 2.781 3756 0.087 3.89 52

arbN5 44 8.105 61.538 227472 1.65 71.695 227472 0.18 4.3 52

arbN7 62 − − − − − − 0.46 6.61 52

arbN9 80 − − − − − − 0.89 7.43 52

arbN15 134 − − − − − − 1.33 9.87 52

fifoN3 14 0.119 4.8 644 0 2.195 644 0.015 3.39 20

fifoN5 22 0.733 16.253 20276 0.08 6.593 20276 0.017 3.62 20

fifoN8 34 199.353 845 3572036 30.2 1087.211 3572036 0.11 4.03 20

fifoN10 42 − − − − − − 0.08 4.38 20

fifoN20 82 − − − − − − 0.11 4.7 20

fifoN50 202 − − − − − − 0.35 6.14 20

fifoN100 402 − − − − − − 0.76 7.67 20

fifoN200 802 − − − − − − 1.56 11.1 20

fifoN300 1202 − − − − − − 3.02 14.3 20

dmeN3 33 3.589 26.1 267, 999 0.265 19.706 117270 0.71 4.44 248

dmeN4 44 1235 1032 15.7M 15.5 553.421 4678742 0.8 5.74 248

dmeN5 55 − − − − − − 2.23 10.19 248

dmeN8 88 − − − − − − 3.57 16.4 447

dmeN9 99 − − − − − − 5.86 20.9 900

dmeN10 110 − − − − − − 58.9 46.6 3211

TU 48 − − − 4.37 144.984 786672 0.219 5.085 278

PC 50 − − − − − − 0.842 7.567 864

MMU 55 − − − − − − 0.688 10.143 2071

XV

In the experiments, DME, arbiter, and FIFO examples are partitioned ac-
cording to their natural structures. In other words, each cell is a component. For
the TU example, it is partitioned into three components, where the middle five
blocks form a component, and gates on the sides of the component in the middle
form the other two. The PC example is partitioned into five components, each
of which contains ten gates. The MMU example is partitioned by following the
structure provided in [19] such that each component defines an output that are
used by other components.

All experiments are performed on a Linux workstation with an Intel Dual-
core CPU and 2 GB memory. The results are shown in Table 1. In Table 1, the
first two columns show the design names and the number of variables used in the
corresponding models. Since all examples are asynchronous circuits, the type of
the variables used in the models is Boolean. Three different methods are used in
the experiments for better comparison. The columns under Monolithic show the
results from using the traditional DFS search method on the whole designs. The
columns under SPIN show the results from using the SPIN model checker with
the partial-order reduction turned on. The last three columns under CompMin
show the results from using the compositional minimization method described
in this paper. In these columns, Time is the total runtime, Mem is the total
memory used, and |S| shows the total number of states found. Specifically, the
column |S| under CompMin shows the total number of states in the largest SG
found during the entire course of the compositional minimization process. The
largest SGs are recorded because their sizes in general determine whether the
whole process of compositional minimization can be finished or not, therefore
their sizes need to be carefully controlled. For examples which use too much
memory, the corresponding entries are filled with −.

From Table 1, it can be seen that the traditional monolithic search method
fails to finish quickly for most of the design. This is understandable due to the
state explosion problem. However, it is surprising to see that SPIN with partial-
order reduction does not do any better. For all ARB and FIFO examples, SPIN
cannot find any reduction, and the numbers of states found by SPIN are exactly
same as those found by the monolithic approaches for ARB and FIFO. For
DME and TU, SPIN does slightly better in terms of reduction in of the number
of states found. On the other hand, SPIN quickly blows up the 2 GB memory
for most of the examples too. One possible explanation is that the partial-order
reduction implemented in SPIN relies on the information about the independence
among transitions, and this information is obtained by examining the structures
of the Promela models. Since these examples are asynchronous circuit designs,
the models for these examples are connections of descriptions of basic logic gates,
and nay be difficult for SPIN to extract sufficient independence information for
effective reduction.

On the other hand, the compositional minimization approach with all reduc-
tions described in this paper can finish all examples in the table quickly. For
ARB and FIFO examples, the total runtime and memory usage grow polyno-
mially in the number of components in the examples. For DME examples, the

XVI

runtime and memory usage show the similar growth curve until the examples
become too large. For dmeN10, there is a big jump on runtime and memory
usage. This is because an intermediate SG contains too many state transitions
after the equivalent reduction, and it takes a big part of total runtime to identify
the equivalent states. The results for dmeN11 are not shown as the runtime for
this example exceeds 5 minute threshold. On the other hand, the memory usage
still grows polynomially as the design size grows. For the three irregular designs,
TU, PC and MMU, where SPIN also fails, they are finished with compositional
minimization using very small amount of runtime and memory. For the PC ex-
ample, a safety failure is found. The same safety failure is also found by the
monolithic approach after about 30 minutes on a much more powerful machine.

From these results, one may conclude that compositional minimization works
much better than partial-order reduction. This is true in some degree. For designs
that do not contain any flaws, compositional minimization can prove the cor-
rectness very efficiently. On the other hand, for designs that contain one or more
bugs, compositional minimization can also finish and return counter-examples
quickly. However, as a lot of design details are removed during the minimization
process, the returned counter-examples are very abstract, therefore not very use-
ful for users to understand the causes of the bugs. In this case, concrete counter-
examples corresponding to those returned by compositional minimization need
to be generated. This can be done by the traditional search on the whole design
guided by the returned counter-examples. Since these counter-examples are so
abstract, the step of generating the concrete counter-examples may be as difficult
as searching the state space of the whole design.

5 Conclusion

This paper presents a compositional minimization approach with a number of
state graph reductions to lower the verification complexity while not introducing
extra paths that might cause false failures nor reducing any essential behaviors.
In other words, the reduction methods are sound and complete. Based on initial
experimental results, these reductions work well on a number of asynchronous
circuit examples. In the future, it is necessary to experiment on more diverse
examples including communication protocols and multithreaded programs to
fully demonstrate its potential. Additionally, it is necessary to develop efficient
approaches that make abstract counter-examples in the reduced SG be concrete
by recovering the reduced information for better debugging.

Acknowledgment

This research is supported by awards CNS-0930510 and CNS-0930225 from the
National Science Foundation.

XVII

References

1. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by
learning assumptions. In Proc. Int. Conf. on Computer Aided Verification, volume
3576 of LNCS, pages 548 – 562. Springer-Verlag, 2005.

2. S. Berezin, S. Campos, and E. Clarke. Compositional reasoning in model checking.
In COMPOS, volume 1536 of LNCS, pages 81–102. Springer-Verlag, Sept. 1998.

3. M. Bobaru, C.S.Pasareanu, and D. Giannakopoulou. Automated assume-guarantee
reasoning by abstraction refinement. In Proc. Int. Conf. on Computer Aided Ver-
ification, LNCS. Springer-Verlag, 2008.

4. D. Bustan and O. Grumberg. Modular minimization of deterministic finite-state
machines. In Proceedings the 6th International workshop on Formal Methods for
Industrial Critical Systems (FMICS’01), July 2001.

5. S. Chaki, E. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee reason-
ing for simulation conformance. In Proc. Int. Conf. on Computer Aided Verifica-
tion, LNCS, pages 534 – 547. Springer-Verlag, 2005.

6. S. Cheung and J. Kramer. Context constraints for compositional reachability
analysis. ACM Transations on Software Engineering and Methodology, 5(4):334–
377, 1996.

7. S. Cheung and J. Kramer. Checking safety properties using compositional reach-
ability analysis. ACM Trans. Softw. Eng. Methodol., 8(1):49–78, 1999.

8. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proceed-
ings of the 4th Annual Symposium on Logic in computer science, pages 353–362,
Piscataway, NJ, USA, 1989. IEEE Press.

9. J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. Learning assumptions for
compositional verification. In Proc. Int. Conf. on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS), volume 2619 of LNCS, pages 331–346.
Springer-Verlag, 2003.

10. D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed Independent
Circuits. PhD thesis, Carnegie Mellon University, 1988.

11. D. Giannakopoulou, C.S.Pasareanu, and H. Barringer. Component verification
with automatically generated assumptions. Automated Software Engineering, pages
297–320, 2005.

12. S. Graf, B. Steffen, and G. Luttgen. Compositional minimization of finite state
systems using interface specifications. Formal Aspects of Computation, 8(5):607–
616, 1996.

13. O. Grumberg and D. Long. Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems, 16(3):843–871, May 1994.

14. T. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: methodol-
ogy and case studies. In Proc. Int. Conf. on Computer Aided Verification, pages
440–451. Springer, 1998.

15. G. J. Holzmann and D. Peled. An improvement in formal verification. In Pro-
ceedings of the 7th IFIP WG6.1 International Conference on Formal Description
Techniques VII, pages 197–211, London, UK, UK, 1995. Chapman & Hall, Ltd.

16. J. Krimm and L. Mounier. Compositional state space generation from lotos pro-
grams. In Proc. Int. Conf. on Tools and Algorithms for Construction and Analysis
of Systems (TACAS), pages 239–258, London, UK, 1997. Springer-Verlag.

17. A. J. Martin. Self-timed fifo: An exercise in compiling programs into vlsi circuits.
Technical Report 1986.5211-tr-86, California Institute of Technology, 1986.

XVIII

18. K. L. Mcmillan. A methodology for hardware verification using compositional
model checking. Technical report, Cadence Berkeley Labs, 1999.

19. C. J. Myers. Computer-Aided Synthesis and Verification of Gate-Level Timed
Circuits. PhD thesis, Stanford University, 1995.

20. W. Nam and R. Alur. Learningcbased symbolic assume-guarantee reasoning with
automatic decomposition. In Proc. Int. Symposium on Automated Technology for
Verification and Analysis (ATVA), volume 4218 of LNCS, 2006.

21. K. Stevens, R. Ginosar, and S. Rotem. Relative timing. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
208–218, 1999.

22. H. Yao and H. Zheng. Automated interface refinement for compositional verifi-
cation. IEEE Transaction on Computer-aided Design of Integrated Circuits and
Systems, 28(3):433–446, 2009.

23. H. Yao, H. Zheng, and C. Myers. State space reductions for scalable verification
of asynchronous designs. In EEE International High Level Design Validation and
Test Workshop (HLDVT), June 2010.

24. T. Yoneda and T. Yoshikawa. Using partial orders for trace theoretic verification
of asynchronous circuits. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems. IEEE Computer Society Press, Mar. 1996.

25. H. Zheng. Compositional reachability analysis for efficient modular verification of
asynchronous designs. IEEE Transactions on COMPUTER-AIDED DESIGN of
Integrated Circuits and Systems, 29(3), March 2010.

26. H. Zheng, J. Ahrens, and T. Xia. A compositional method with failure-
preserving abstractions for asynchronous design verification. IEEE Transactions
on COMPUTER-AIDED DESIGN of Integrated Circuits and Systems, 27, 2008.

27. H. Zheng, E. Mercer, and C. Myers. Modular verification of timed circuits using au-
tomatic abstraction. IEEE Transactions on Computer-Aided Design, 22(9):1138–
1153, 2003.

28. H. Zheng, C. Myers, D. Walter, S. Little, and T. Yoneda. Verification of timed
circuits with failure directed abstractions. IEEE Transactions on Computer-Aided
Design, 25(3):403–412, 2006.

