
Model Checking DSL-Generated C Source Code

Martin Sulzmann and Axel Zechner

Informatik Consulting Systems AG, Germany
{martin.sulzmann,axel.zechner}@ics-ag.de

Abstract. We report on the application of SPIN for model-checking C
source code which is generated out of a textual domain-specific language
(DSL). We have built a tool which automatically generates the necessary
SPIN wrapper code using (meta-)information available at the DSL level.
The approach is part of a larger tool-chain for developing mission crit-
ical applications. For example, error traces resulting from SPIN can be
automatically replayed at the DSL level and yield concise explanations
in terms of a temporal specification DSL. The tool-chain is applied in
some large scale industrial applications. We demonstrate the approach
via a smaller example taken from the Automotive area.

1 Introduction

The SPIN model checker [4] supports the embedding of native C source code for
verification purposes. This has the advantage that there is no need to re-model
the application in the PROMELA modeling language and the potentially error-
prone model-to-model transformation step from a source model to PROMELA
can be avoided entirely. As discussed in [5], the method is the easiest to apply
in the verification of single-threaded code, with well-defined input and output
streams. Our interest here is in the verification of synchronously executed C
source code which perfectly matches these criteria.

The C source code we intend to model check is generated out of a textual
domain-specific language (DSL) which is part of a DSL-based tool-chain for
software development of mission critical systems. Figure 1 provides a summary.
Our focus so far was on implementation and testing. What has been missing is
static verification. To close this gap, we have integrated SPIN in our tool chain
to guarantee a smooth integration between SPIN for model-checking and our
DSL-based software development approach. See Figure 2.

In this paper, we provide an overview of the purpose of the DSLs and their in-
tegration with SPIN. The particular contribution is the SPINRunner tool which
effectively represents the SPIN-DSL integration described in Figure 2. Details of
the SPINRunner tool are described in the appendix which also outlines a tool
demonstration. The implementation (DSLs and tools) as well as some example
from the Automotive area are freely available via

http://ww2.cs.mu.oz.au/~sulzmann/spin-dsls.html

Fig. 1: DSL Tool-Chain Overview – Implementation and Testing

2 DSL Tool-Chain Overview

First, we review the various DSLs and their interaction in terms of implementa-
tion and testing. See Figure 1. For implementation we use a rule-based DSL in
spirit of the Atom DSL [3] where in each cycle every rule is tried sequentially.
Our DSL code generator translates each rule into straight-forward C code, in
essence, simple if-then statements. Similar to SCADE [8], we generate a func-
tion rules init() to initialize state variables and a periodically executed func-
tion rules process(). All DSL variable declarations, e.g. input, output, state
and local, are declared as global C variable declarations. Thus, we can ensure
predictable memory consumption.

For testing, we use a DSL to specify use cases to stimulate the application.
The stimulation is weaved together with the C code of the application and yields
a test executable. Running the test executable yields a finite program trace which
is then matched against a property DSL which describes linear temporal logic
(LTL) [7] specifications. LTL trace matching yields a detailed test report based
on the method described in [9].

The DSLs have been applied with success in some large scale industrial ap-
plications in the Aerospace& Defense area. An important feature is the ability
to customize the DSLs to specific application needs. For example, we have built
numerous extensions such as Software Cost Reduction (SCR) [2] style mode

2

and output tables, safe state-charts a la SCADE and new forms of LTL pattern
abstractions [1] etc. Such extensions can be fairly quickly integrated in our ap-
proach thanks to our use of internal DSLs. The advantage of an internal DSL is
that we can make use of the host language, in our case Haskell, to specify new
constructs as ’library’ extensions. That is, at the Haskell level, new constructs
are mapped to existing constructs without having to implement new parsers,
code generators etc.

3 SPIN-DSL Integration

Environment DSL
Rules DSL

Model
Prop DSL

LTL Specification
UseCase DSL

Test Case

Model Checker Generator

PROMELA
Closed world model

and embeded rules C
source Code

SPIN Model Checking OKError Trace

Transformation

Fig. 2: SPIN-DSL Integration for Verification

Figure 2 gives an overview of the SPIN-DSL integration. The C source code
generated out of the rule-based DSL is literally embedded into a PROMELA
model which includes the LTL specification and a closed world model of the
environment specified at the DSL level. For example, we can define equivalence
classes among the set of input variables to reduce the state space. We also provide
for a number of optional automatic optimizations by for example reducing the set
of input variables to those used in the currently checked LTL property. The entire
process of generating the PROMELA model out of the DSLs and performing the
model checking is done automatically by the SPINRunner tool. That is, the user
is freed from any low-level model checker interaction and can focus on the high-
level DSL modeling part.

3

In our experience, this approach works fairly well for medium-sized exam-
ples. For example, we can fully model check a realistic example taken from the
Automotive domain. For many real-world applications, the state space is simply
too big such that model checking would yield an answer within some reasonable
amount of time. For us this is not a serious issue. Our main use of SPIN is for
bug-finding rather than fully static verification. In our experience, model check-
ing often reveals many simple but tedious to spot coding errors by producing
error traces.

The error trace can then be used to reach the point in the application where
the violation occurs. Additionally, we can provide explanations in terms of the
LTL specification which has been violated. Our tool automatically transforms
the SPIN error trace into a test case of the UseCase DSL. Thus, we stimulate the
application to obtain a program trace which is then matched against the LTL
specification. Our constructive LTL matching algorithm provides a detailed test
report which includes explanations which parts of the LTL specification have
been violated.

3.1 Highlights of Model Checker Generator

active process ModelWrapper(){

atomic{

c_code { rules_init(); push_state(); }

}

do

::atomic{

stimulate_inputs();

c_code { pop_state(); rules_process(); push_state(); log_state(); }

}

od

}

Fig. 3: DSL-Generated SPIN Wrapper Process

Model Checker Generator (MCG) is the central component of the SPIN in-
tegration into our tool-chain. The MCG tool takes the DSL description of the
model, specification, and some environment constraints to automatically gener-
ate the input for SPIN model checking:

1. LTL DSL statements in SPIN expression format.
2. Bit-optimal representation of DSL variables.
3. A wrapper process to execute the rule-based DSL model.

For brevity, we ignore the first two points which are fairly straightforward. Fig-
ure 3 shows the central components of the SPIN wrapper code to execute the
DSL model (i.e. its C code representation). We first atomically initialize the

4

DSL model by executing rules_init() followed by repeated non-deterministic
atomic execution of rules_process().

Functions push_state() and pop_state() exchange state information be-
tween SPIN and the C interface of our DSL model. We only need to keep track
of DSL variables which represent state and global input and output. Any locally
declared DSL variable can be ignored because such variables are functionally
defined by the surrounding context.

Function stimulate_inputs() represents the environment model for closed-
loop verification. We non-deterministically select global input values. To reduce
the set of input combinations, and thus the state-space of model-checking, we
build equivalence classes of input values (as discussed in [6]). The definition of
equivalence classes can be specified at the DSL level and has the consequence
that model-checking is potentially incomplete. That is, depending on the rep-
resentative of the equivalence class, an actual violation of an LTL specification
might remain undetected. As already mentioned, our main motivation for the
integration of DSL is for bug-finding and the ability to replay error traces at the
DSL level. Hence, the incompleteness issue is not of major concern for us.

The trace logger function log_state() is activated during simulation of
SPIN error trails. This function transforms the internal representation of valua-
tions of input, output and state variables to a format readable for the subsequent
steps of our tool chain.

References

1. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 21st international
conference on Software engineering, ICSE ’99, pages 411–420, New York, NY, USA,
1999. ACM.

2. Stuart R. Faulk and Constance L. Heitmeyer. The SCR approach to requirements
specification and analysis. In Proc. of Requirements Engineering (RE’97), page 263.
IEEE Computer Society, 1997.

3. Tom Hawkins. Atom DSL. http://hackage.haskell.org/package/atom/.
4. Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-

Wesley Professional, first edition, 2003.
5. Gerard J. Holzmann and Rajeev Joshi. Model-driven software verification. In Proc.

of SPIN’04, volume 2989 of LNCS, pages 76–91. Springer, 2004.
6. D. Richard Kuhn and Vadim Okun. Pseudo-exhaustive testing for software. In Proc.

of 30th Annual IEEE / NASA Software Engineering Workshop (SEW-30 2006),
pages 153–158. IEEE, 2006.

7. Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, pages 46–57. IEEE, 1977.

8. Scade suite. http://www.esterel-technologies.com/products/scade-suite/.
9. Martin Sulzmann and Axel Zechner. Constructive finite trace analysis with linear

temporal logic. In Proc. of TAP’12, 2012. To appear.

5

A Tool Demonstration Outline

We demonstrate the SPINRunner with an example taken from the Automotive
area. Specifically, we consider a motor start-stop automatic (MSA) application.
The purpose of a MSA is depending on the state of the vehicle to either switch
on or switch off the engine (e.g. to save fuel, if the vehicle is not moving).
Appendix B provides an overview of the MSA application. The SPINRunner is
discussed in Appendix C.

B Motor Start-Stop (MSA) Example

Figure 4 shows the concrete interface of the MSA example encoded in the Rules
DSL which is embedded in Haskell. DSL combinators inp and outp allow us
to declare input and output variables. The first argument is a unique identifier
whereas the second argument is the type to be used. Types in program text are
not first-class in Haskell. Hence, we simply create a dummy program text, here
undefined, which is assigned the desired type.

The translation to C is straightforward. For example,

speed <- inp "SPEED" (undefined :: Speed)

translates to

int16_t IN_GENSPEED;

where the prefix ’IN GEN’ is used for internal naming reasons.
Figure 5 shows some snippets of the MSA applications where we make use

of SCR [2] style mode and output tables. These extensions are mapped to the
simple rule’s construct which provides the basis of the Rules DSL. The entire
MSA application boils down to about 67 primitive rules.

The mode table keeps track if the pressure is either normal, above a certain
limit or some alarm mode applies. The alarm mode shall apply if the pressure is
above the limit for a certain time period for which we use a counter variable. The
counter’s value is defined by the output value where for example we increment
the current value if we are in the PressureAboveLimit mode.

Figure 6 formulates some of the requirements imposed on the MSA applica-
tion as Prop DSL statement. The embedGLTL embeds a further domain-specific
extension in the general LTL language. For example, we make use of ’higher-level’
combinators such as

-- p .=|=|=>. (n,m) $ q
-- if p holds for min n or max m steps,
-- then thereafter q holds

The combinator invariantTest indicates that the LTL property shall be checked
against all traces of this test suite. Requirement ”MSA Becomes Active” states
that the MSA becomes active if there’s a rising key value edge and the MSA has
been inactive earlier on. Requirements ”Engine Off” states that the engine shall
be switched off if

6

-- type definitions

type Speed = Int16 -- km/h

type Temperature = Int16 -- Celcius

type Pressure = Int16 -- 1/10 N/m^2

type Voltage = Int16 -- 1/10 V

type SteeringAngle = Int16 -- 0..360 Degree

data Gear = P | R | N | D deriving (Eq, Show, Bounded, Enum)

data OnOff = Off | On deriving (Eq, Show, Bounded, Enum)

data OpenClose = Open | Closed

deriving (Eq, Show, Bounded, Enum)

data PressedNotPressed = Pressed | NotPressed

deriving (Eq, Show, Bounded, Enum)

data OpMode = MSA_Active | MSA_Inactive

deriving (Eq, Show, Bounded, Enum)

appMSA = node "main" $ do

-- inputs

speed <- inp "SPEED" (undefined :: Speed)

temperature <- inp "TEMPERATURE" (undefined :: Temperature)

voltage <- inp "VOLTAGE" (undefined :: Voltage)

pressure <- inp "PRESSURE" (undefined :: Pressure)

steeringAngle <- inp "STEERING_ANGLE" (undefined :: SteeringAngle)

driversBuckle <- inp "DRIVERS_BUCKLE" (undefined :: OpenClose)

gear <- inp "GEAR" (undefined :: Gear)

frontLid <- inp "FRONT_LID" (undefined :: OpenClose)

driversDoor <- inp "DRIVERS_DOOR" (undefined :: OpenClose)

engineStatus <- inp "ENGINE_STATUS" (undefined :: OnOff)

msaKey <- inp "MSA_KEY" (undefined :: PressedNotPressed)

-- ouputs

msaStatus <- outp "MSA_STATUS" (undefined :: OpMode)

engine <- outp "ENGINE" (undefined :: OnOff)

msaLed <- outp "MSA_LED" (undefined :: OnOff)

-- implementation is following here

Fig. 4: MSA Interface

– for 9 cycles, the (brake) pressure is above 15, and
– in the 10th cycle we have that

• the pressure is above 15, and
• the MSA is active, and
• the speed is below 2, and
• the temperature is above 3, and
• the (battery) voltage is above 11.

In summary, the MSA application consists of a module AppMSA which repre-
sents the actual MSA implementation and a module ReqMSA which represents the
LTL requirements imposed on the MSA application. See Figure 7. These mod-
ules and the corresponding ’main’ functions msaApp and reqs are DSL inputs
for the SPINRunnter tool.

7

-- mode table: pressure normal, above limit, alarm

mode .=:==.

modeMachine "pressure" PressureNormal

[(PressureNormal .---->. PressureAboveLimit)

(pressure .>. limitPressure)

, (PressureAboveLimit .---->. PressureNormal)

(limitPressure .>. pressure

.||. pressure .==. limitPressure)

, (PressureAboveLimit .---->. PressureAlarm)

(pressure .>. limitPressure

.&&. (valueState counter) .==. constE 10)

, (PressureAlarm .---->. PressureNormal)

(limitPressure .>. pressure)

]

-- output table for a counter: increment if pressure above limit

ifEq $

counter =:=?=

(valueVar mode .==. constE PressureNormal)

.==:>.

(constE (1::Word32))

‘elseIf‘

(valueVar mode .==. constE PressureAboveLimit)

.==:>.

((constE (1::Word32)) .+. (valueState counter))

‘defaultCase‘

(valueState counter)

Fig. 5: MSA Implementation

C SPINRunner

The SPINRunner takes the DSL formulation of the application and its require-
ments and executes all steps from generation of the model checker (MCG) to
SPIN model checking to replaying of error traces.

C.1 Overview of Execution Steps

Step 1 Read input models. SPINRunner reads and interprets the system model
as Rules DSL model, specification as Prop LTL DSL Spec.

Step 2 Generate the C code. Then the system model described in Rules DSL is
compiled to C code to be included by the SPIN Wrapper. Our code generator
simply produces the end product C code as would be included in the final
embedded system.

8

-- | condition about the state of the car ignoring the engine status

msa_on_car_cond = (valueIn frontLid .==. constE Closed)

./\. (valueIn driversDoor .==. constE Closed)

./\. (valueIn driversBuckle .==. constE Closed)

./\. (valueIn gear .==. constE D)

-- | car status including the engine status

msa_on_cond = msa_on_car_cond

./\. (valueIn engineStatus .==. constE On)

msaReqs = [

invariantTest "MSA_Becomes_Active"

(embedSeqLTL $

always $

(valueIn msaKey .==. constE NotPressed) ./\.

(valueOut msaStatus .==. constE MSA_Inactive)

.==>. 1 $

(((valueIn msaKey .==. constE Pressed) ./\.

msa_on_cond)

.=>. (valueOut msaStatus .==. constE MSA_Active)

)

)

,

invariantTest "Engine_Off"

(embedSeqLTL $

always $

(valueIn pressure .>. constE 15)

.=|=|=>. (9,9) $

(valueIn pressure .>. constE 15) ./\.

(valueOut msaStatus .==. constE MSA_Active) ./\.

(constE 2 .>. valueIn speed) ./\.

(valueIn temperature .>. constE 3) ./\.

(valueIn voltage .>. constE 11)

.=>.

(valueOut engine .==. constE Off)

)

]

Fig. 6: MSA Requirements

Step 3 Collect environment model. Often industrial-size model can only be ra-
tionally handled if integer type inputs are constrained to interesting scenar-
ios. If supplied, SPINRunner collects information from the supplied environ-
ment model. Optionally, the tool can automatically infer restrictions from
the LTL-specifications similar to equivalence class testing.

Step 4 Build SPIN wrappers. For each LTL formula specified, the Model Checker
Generator (MCG) produces an individual wrapper and finally model checker.

9

module AppMSA where

msaApp = node "main" ...

module ReqMSA where

reqs = ...

Fig. 7: MSA DSL Input for SPINRunner

Step 4.1 Extract the model interface. MCG extracts all information from the
system model to generate the wrapper: input, output, and state variables,
user supplied types and enumerations. Integer types are mapped to corre-
sponding SPIN types. Enumerations types are represented using the opti-
mum bit-size.

Step 4.2 Generating state variables. All state variables including outputs and
unconstrained integer type inputs are represented as Promela variables to
include them into the state vector. All other inputs are combined to a single
variable for compact representation of input configurations. To exchange
information between the model C code, C functions push and pop (see Fig.
9) are generated surrounding the cyclically called system model.

Step 4.3 Input stimuli. For model-checking with SPIN, MCG generates code
to stimulate the inputs of the system model. For exhaustive analysis, an
input configuration is chosen non-deterministically in each cycle. As previ-
ously stated, input configurations for all enumeration-type and constrained
variables are combined to a single combination variable which is assigned
non-deterministically. MCG generates a list of all input combinations and a
C function setup inputs to assign the inputs from that list addressed by the
combination number (see Fig. 10).

Step 4.4 Logging function. In order to allow further processing of a possible
error trail, MCG produces the C function dumpTrail which dumps the vari-
able contents during simulation runs. Variable configurations are dumped in
a format to allow further processing in our tool chain.

Step 4.5 Model wrapper process. The model wrapper process cyclically calls
the system model C code and generation of input stimuli. During simulation
runs such as replay of an error trace the logging function dumpTrail is called.
Fig. 8 depicts the output generated by this step.

Step 5 Compiling and executing the model checker. SPINRunner invokes SPIN
and a C compiler (e.g. gcc) to generate the model checker executable pan.
Compiler options for special SPIN optimizations or model checking vari-
ants can be supplied. As default breadth first search is activated which is
restricted to safety properties but yields a good trade-off for performance.
Finally, the pan model checker is called.

10

Step 6 Explaining an error trace. In case model checking yields an error trace,
SPINRunner invokes pan again to dump the trace of input configurations
which lead to the violation of the specified property.

active proctype ModelWrapper(){

atomic{

c_code{

demonstratorInit();

push_state();

};

select(_combiVar: 0..20735);

c_code{

pop_state();

setup_input(now._combiVar);

demonstratorRules();

if (readtrail) dumpTrail();

push_state();

}

}

do

::atomic{

select(_combiVar: 0..20735);

c_code{

pop_state();

setup_input(now._combiVar);

demonstratorRules();

if (readtrail) dumpTrail();

push_state();

}

}

od;

}

Fig. 8: Promela model from the MSA case study

C.2 Approximation Reduction

A predominant challenge for model checking of industrial-size problems is to
cope with the complexity of a model’s inputs. Equivalence reduction is an ap-
proximative testing technique. SPINRunner implements this pseudo-exhaustive
technique and can automatically derive equivalence classes from the Prop DSL
Specification.

11

c_code{

\#include "setup_input.h"

\#include "dumpTrail.h"

void push_state(){

now.OUT_GENENGINE=OUT_GENENGINE;

...

now.s_STATE_GENloc_engine54=s_STATE_GENloc_engine54;

now._combiVar=0;

now.IN_GENVOLTAGE=IN_GENVOLTAGE;

now.IN_GENTEMPERATURE=IN_GENTEMPERATURE;

now.IN_GENSPEED=IN_GENSPEED;

now.IN_GENPRESSURE=IN_GENPRESSURE;

}

void pop_state(){

OUT_GENENGINE=now.OUT_GENENGINE;

...

s_STATE_GENloc_engine54=now.s_STATE_GENloc_engine54;

}

}

Fig. 9: Exchange information between C code and SPIN model checker

typedef struct{

int IN_GENSPEED;

...

unsigned IN_GENMSA_KEY:1;

} tInputStimulus;

tInputStimulus cInputStimulus[]={

{1,2,10,14,-31,Open,P,Open,Open,Off,Pressed},

...

};

void setup_input(int _combi){

IN_GENSPEED=cInputStimulus[_combi].IN_GENSPEED;

...

IN_GENMSA_KEY=cInputStimulus[_combi].IN_GENMSA_KEY;

}

Fig. 10: Stimulate the inputs adressed by an input combination

In Prop DSL propositions over integer variables x are of the form x < c or
x = c where c is an integer constant. By traversing all provided LTL-expressions,
the algorithm collects all propositions over a variable x. The propositions are
then sorted and representatives chosen for each of the equivalence classes formed
by the relation expressions.

12

useCase "emitEngine_OffFailureDerivedFromSPINErrorTrace" (

-- Cycle #1

(emitStep $

speed .=. constE (1::Int16)

<+> temperature .=. constE (2::Int16)

<+> voltage .=. constE (10::Int16)

<+> pressure .=. constE (16::Int16)

<+> steeringAngle .=. constE (-32::Int16)

<+> driversBuckle .=. constE Open

<+> gear .=. constE P

<+> frontLid .=. constE Open

<+> driversDoor .=. constE Open

<+> engineStatus .=. constE Off

<+> msaKey .=. constE NotPressed

)

<!> delay 7

<!>

-- Cycle #9

(emitStep $

temperature .=. constE (3::Int16)

<+> voltage .=. constE (11::Int16)

<+> driversBuckle .=. constE Closed

<+> gear .=. constE D

<+> frontLid .=. constE Closed

<+> driversDoor .=. constE Closed

<+> engineStatus .=. constE On

<+> msaKey .=. constE Pressed

)

<!>

-- Cycle #10

(emitStep $

temperature .=. constE (2::Int16)

<+> voltage .=. constE (10::Int16)

<+> pressure .=. constE (14::Int16)

<+> driversBuckle .=. constE Open

<+> gear .=. constE P

<+> frontLid .=. constE Open

<+> driversDoor .=. constE Open

<+> engineStatus .=. constE Off

)

<!> delay 2

Fig. 11: DSL test case obtained from SPIN error trace

C.3 MSA Application

Applying the SPINRunner on our MSA example yields an error trace in case
of the LTL requirement Engine Off from Figure 6. The SPIN error trace is
systematically turned into UseCase DSL test case. See Figure 11.

13

This test case is then used to stimulate the MSA application to obtain a
(finite) program trace. Matching this program trace against the the LTL property
Engine Off fails. Based our constructive LTL matching method, we obtain the
information that all pre-conditions

(valueIn pressure .>. constE 15) ./\.
(valueOut msaStatus .==. constE MSA_Active) ./\.
(constE 2 .>. valueIn speed) ./\.
(valueIn temperature .>. constE 3) ./\.
(valueIn voltage .>. constE 11)

but the following does not hold

(valueOut engine .==. constE Off)

This suggests that there’s a problem in our implementation of the pressure con-
trol logic. Indeed, the transition guard from Figure 5

(PressureAboveLimit .---->. PressureAlarm)
(pressure .>. limitPressure
.&&. (valueState counter) .==. constE 10)

is incorrect. Instead of the 10 cycles we should only wait 9 cycles. That is, we need
to replace constE 10 by constE 9. After this fix. All nine LTL requirements of
the MSA application can be verified by SPIN.

C.4 Model-Checking Benchmarks

List of SPIN options used for benchmark:
Option 1: depth first search -DSFH -DBFS -DSAFETY

Option 2: safety with optimizations -DSAFETY -DSFH

Option 3: safety -DSAFETY

Option 4: acceptance

Option 1 Option 2 Option 3 Option 4
time [s] [byte] time [s] [byte] time [s] [byte] time [s] [byte]

Engine Off 34.900 1,690,020 24.400 345,713 27.200 345,713 60.300 689,036
Engine On1 41.000 1,690,117 - - - - - -
Engine On1b 7.030 402,840 1.830 345,518 1.780 345,518 1.960 688,841
Engine On2 3.370 116,062 0.340 345,518 0.420 345,518 1.400 688,841
LED Off 1.940 116,062 0.340 345,518 0.617 345,518 0.895 688,841
LED On 2.400 116,062 0.605 345,518 0.315 345,518 1.620 688,841
MSA Becomes Active 43.200 1,690,117 22.100 345,616 30.500 345,616 41.300 688,939
MSA Becomes Inactive1 42.900 1,690,117 13.000 345,518 10.800 345,518 25.200 688,841
MSA Becomes Inactive2 1.900 116,062 0.245 345,518 0.240 345,518 0.615 688,841

Table 1. Time / memory usage for different properties

Table 1 shows some benchmark results for our MSA example. The Tables
show model-checking time / memory usage for different LTL properties. We

14

have applied the optimizations mentioned in the previous sections. The results
are obtained on a Dell Latitude E5510, Intel Core i5 CPU 2.67 GHz, 4GB Main
Memory running with Windows 7 32-Bit. To get comparable results SPIN was
run in single CPU mode only.

C.5 Summary: Invoking the SPIN Runner command line tool

Example usage for MSA case study. $WP is a shell variable pointing to the path
where the output files should be placed.

SPINRunner -r $WP -w $WP -c gcc-4 -f ReqMSA.hs -t reqs
-m AppMSA.hs -s msaApp

-w FilePath --workingPath=FilePath

Path to working folder

-r FilePath --spinModelPath=FilePath

Path to regression test folder

-c Command --compiler=Command

The C compiler you want to use (defaults to g++)

-d Compiler Flags --compileFlags=Compiler Flags

The compile flags you want to use (defaults to “-DSFH -DBFS -DSAFETY
-DNOFAIR -DNOBOUNDCHECK -DXUSAFE”)

-p Modelchecker Flags --modelcheckingFlags=Modelchecker Flags

The model checking flags you want to use (defaults to -m10000000)

-f FilePath --testFile=FilePath

The test file you want to use (defaults to supply req file), e.g. ReqMSA

-t Name --testCases=Name

The test cases you want to use (defaults to supply test cases), e.g. reqs

-E Name --testCases=Name

Environment model of possible values for a variable you want to use (defaults
to Nothing)

-m FilePath --modelFile=FilePath

The model file you want to use (defaults to supply model file), e.g. AppMSA

-s Name --modelName=Name

The model name you want to use (defaults to supply model name), e.g. msa

-e True --useEqClsRed=True

Use equivalence class reduction from ltl formulas (defaults to True)

15

