FAuST: A Framework for Formal Verification,
Automated Debugging, and Software Test
Generation*

Heinz Riener! and Gérschwin Fey!?

! Institute of Computer Science, University Bremen, Germany,
{hriener,fey}@informatik.uni-bremen.de,
http://www.informatik.uni-bremen.de/agra/

2 Institute of Space Systems, German Aerospace Center, Germany,
goerschwin.fey@dlr.de,
http://www.dlr.de/irs/

Abstract. We present FAuST, an extensible framework for Formal veri-
fication, AUtomated debugging, and Software Test generation. Our frame-
work uses a highly customizeable Bounded Model Checking (BMC) algo-
rithm for formal reasoning about software programs and provides different
applications, e.g., property checking, functional equivalence checking, test
case generation, and fault localization. FAuST supports dynamic execu-
tion and multi-threaded symbolic reasoning using the LLVM compiler
infrastructure and an abstraction layer for decision procedures.

Keywords: Formal verification, Debugging, SAT

1 Introduction

Bounded Model Checking (BMC) [26] is a technique to check whether finite-state
systems conform to their specifications. BMC searches for counterexamples of
bounded length and successively increases the bound until either a counterexample
is found or the system’s correctness can be guaranteed. The BMC problem is
represented symbolically as multiple instances of the Satisfiability (SAT) problem.
In practice BMC serves as a refutation technique because BMC problems often
exhaust a resource limit before the system is proven correct.

More recently, BMC is used in software verification [BI10]: the behavior of a
program is extracted from its source code and modeled using logic formulae. Clarke
et al. [5] introduced the C' Bounded Model Checker (CBMC) which implements
BMC considering finite-state systems given as ANSI-C programs. However, CBMC
uses its own ANSI-C language parser and needs adaptions to keep pace with
trends in compiler construction.

Today, flexible compilers like the Low Level Virtual Machine (LLVM) [12]
compiler afford program analysis and verification directly on the compiler’s
intermediate representation. For instance, researchers proposed prototype tools
based on LLVM BIISIT7IATATIITG] for applications like symbolic execution,
test generation, and BMC. The tools are conceptually similar but are often
engineered from scratch. Each tool expresses its application as instances of
the SAT problem with respect to some background theory. The instances are
then solved using a corresponding Decision Procedures (DP), called Satisfiability
Modulo Theories (SMT) solver.

We present FAuST, an extensible framework for Formal verification, Automated
debugging, and Software Test generation. FAuST offers a tool bench for different
verification and debugging applications exploiting their similarities. The input of

* This work was supported by the German Research Foundation (DFG, grant no. FE
797/6-1)

http://www.informatik.uni-bremen.de/agra/
http://www.dlr.de/irs/

2 Formal Verification, Automated Debugging, and Software Test Generation

each FAuST tool is a software program. The output depends on its application.
For instance, in fault-based test generation [19] the output is a test suite and in
fault localization [20] the output is a set of potentially faulty program locations.
The core engine of each tool is a highly customizeable BMC algorithm.

The conceptual architecture of FAuST is built in three layers: (1) in the program
layer FAUST deals with analyzing and transforming the input program. (2) In
the application layer FAuST chooses a suitable background theory and builds
a SAT problem from the transformed program with respect to the application.
(3) In the logic layer the SAT problem is simplified and solved using SAT and
SMT solvers.

Figure [1] shows the typical flow of a tool in the FAuST framework. Dashed
boxes denote objects and solid boxes denote transformations on those objects. In
the program layer we leverage the LLVM compiler to lower the input program
to LLVM’s intermediate representation, LLVM-IR. In the application layer we
instantiate an encoder with respect to the application, i.e., a customized BMC
algorithm which generates a SAT instance from the transformed program. In the
logic layer we use metaSMT [9] as a generic API interface to different SAT and
SMT solvers.

[Program layer {
[] Application layer

Logic layer Transform

SAT

o O [compil SRaas | UNSAT
' Program r—f #O0P SH—o LLVM-IR Encode — Logic =——< DP >—
i i rontend I I
N o 7 | 7

Fig. 1: Typical flow of a tool within the FAuST framework

FAuST is the first tool bench which integrates formal verification, automatic
debugging, and test generation into a unified framework. Its main features are:
(1) state-of-the-art compiler technology built on the LLVM compiler infrastructure,
(2) dynamic execution using Just-In-Time (JIT) compilation, (3) an abstraction
layer for decision procedures leveraging metaSMT, and (4) parallel solving using
multiple SAT and SMT solvers simultaneously.

The remainder of the paper is structured as follows: In Section [2] we describe
the BMC-based approach to formalize LLVM-IR into logic. In Section [3] we discuss
the application currently integrated into FAuST. Section [4] concludes the paper.

2 Formalizing LLVM-IR into Logic using BMC

We use a BMC approach to formalize LLVM-IR into logic: given an imperative,
non-concurrent program P and an unrolling bound k, we unroll loops and
recursive functions in the program with respect to k and transform the unrolled
program into Static Single Assignment (SSA) [2I] form. The transformations for
loop unrolling and to establish SSA form are provided by the LLVM compiler
infrastructure.

The resulting program consists of global program variables and a set of func-
tions with one entry function. A function f defines a Control Flow Graph (CFG)
CFG(f) = (Vy, Ey) with nodes V; and edges Ey. The nodes v € V; correspond
to basic blocks and the edges e € Ey correspond to possible control flow transfers
between basic blocks. Each basic block is a sequence of instructions over program
variables and constant values and has a unique label. We write Pred(v) and Inst(v)
to denote the set of predecessors and the set of instructions of the basic block v.

Formal Verification, Automated Debugging, and Software Test Generation 3

Suppose P is a program consisting of functions f;, 0 < ¢ < n, with the entry
function fy we encode the program into a logic formula,

p = /n\ /\ \/ ey /\ Encode(s) | Aey,,

i=0beVy, | b'EPred(b) s€lnst(b)

i.e., an instance of the SAT problem. We introduce a logic variable with corre-
sponding data type for each program variable and a constant symbol for each
constant value in P. The program is encoded by formalizing the semantics of
each function, each basic block, and each instruction. The LLVM-IR instruction
set is in detail discussed in the LLVM Language Reference Manual [13]. Encoding
the individual instruction types is straightforward, i.e,. either the logic of choice
provides a corresponding word-level operation or we use an approach similar
to Tseitin’s encoding [22] to lower the operation to a semantically equivalent
logic formula using Boolean connectives. We write Encode(s) to denote the logic
formula obtained from encoding instruction s.

In order to encode the control flow of a program, we introduce one Boolean
variable for each edge in a CFG(J;), 0 <14 < n, and additional Boolean variables
for each function call and return from a function to the callers site. The value of
a Boolean variable corresponds to a control flow transfer in the program, i.e., the
value is true if the control flow transfers when the program is executed and false
otherwise. We write ey to denote the Boolean variable which corresponds to
the control flow transfer from basic block " to basic block b and we write ey, to
denote the Boolean variable which corresponds to the entry of function f;.

Each satisfying assignment of the resulting logic formula p corresponds to a
possible assignment to the program variables in P and determines an execution
of the program. Figure [2| shows a fragment of an LLVM program and the logic
formula in SMT-LIB version 2 [I] format. The program stores the minimum of
two given program variables a and b in program variable c.

0. (set-logic QF_BV)
1. (declare-fun |%al () (_ BitVec 32))
2. (declare-fun |%b| () (_ BitVec 32))
0. ;<label>:1 3. (declare-fun |%c| () (_ BitVec 32))
1. %2 = icmp slt i32 %a, %b 4. (declare-fun [%2] () Bool)
2. br i1 %2, label %3, label %4 5. (declare-fun |-->%1] () Bool)
3. 6. (declare-fun |%1-->%3| () Bool)
4. ;<label>:3 7. (declare-fun |%1-->%4| () Bool)
5. br label %5 8. (declare-fun [%3-->%5| () Bool)
6. 9. (declare-fun [%4-->%5| () Bool)
7.;<label>:4 10. (assert (=> |-->%1| (= %21 (bvslt |%al 1%bl))))
8. br label %5 11. (assert (=> |-->1]|
9. 12. (and (=> %2 |%1-->%31)
0.;<label>:5 13. (=> (not |%21) 1%1-->%41))))
1. %c = phi i32 [%a, %3], [%b, %4] 14. (assert (= |%1-->%3| |%3-->%51))

15. (assert (= |%1-->%4| 1%4-->%51))
16. (assert (=> (or [%3-->%5| 1%4-->%51)
17. (= lhel Gite |%3-->%51 l%al 1%b1))))

Fig. 2: A fragment of an LLVM program (on the left) and the corresponding logic
formula in SMT-LIB version 2 format (on the right).

3 Applications

In this section we outline the applications currently implemented as FAuST tools
and list their runtimes for the ANSI-C program TCAS from the Software-Artifact

4 Formal Verification, Automated Debugging, and Software Test Generation

Infrastructure Repository (SIR). In order to use any tool from FAuST, a user has
to mark the program’s input variables with special function calls __faust_input.
The program variables are then treated as open variables with non-deterministic
values when encoded. Moreover, the user has to pass the name of the entry
function to be checked to a tool.

3.1 Formal Verification

FAuST provides a standard BMC tool for formal verification which supports
property checking and functional equivalence checking. In the former case the user
has to provide local assertions in the program’s source code. In the latter case a
reference implementation serves as the formal specification. Then, the user has to
mark corresponding pairs of program variables in the two implementations to be
compared with a special function call __faust_output. Optionally, FAuST allows
for validation of counterexamples on the real program using LLVM’s JIT compiler
and execution engine, i.e., a test driver with the values of the counterexample
is automatically synthesized, compiled, and executed. Functional equivalence
checking of TCAS takes 0.18 seconds using Z3 as SMT solver which is comparable
to state-of-the-art BMC tools.

3.2 Automatic Debugging

FAuUST provides an extension of the BMC tool for automatic debugging. Given
a program that does not conform to its formal specification, the tool computes
potentially faulty statements. Basically, two strategies are supported: Model-Based
Diagnosis (MBD) [18[7] and Error Ezplanation (EE) [8]. The MBD strategy
computes program variables which when replaced with open variables in the SAT
instance correct the program. The EE strategy selects a counterexample and
compares the values assigned to the program variables to the values assigned in
the most similar execution trace which does not refute the formal specification.
Different values indicate potentially faulty statements. The optimization problem
is implemented as a binary search over logic variables utilizing incremental SAT.
For 41 mutants of TCAS, we computed potentially faulty program locations
using both strategies [20]: on average the computation takes 4.37 seconds with
strategy MBD and 39.29 seconds with strategy EE.

3.3 Test Generation

FAuST provides a mutation-based test generator [19]: A given LLVM-IR program
is seeded with artificial faults. The fault seeding is implemented as an LLVM
compiler pass. The resulting program, called meta-mutant, contains all faults
each guarded with a condition. FAuST instantiates the BMC tool to generate a
counterexample for each fault by successively asserting one guard conditions to
be true, respectively. From each counterexample a test case is extracted.

4 Conclusions

We have presented FAuST, an extensible framework for Formal verification,
Automated debugging, and Software Test generation. The framework offers a
tool bench for different verification and debugging applications. FAuST utilizes
the LLVM compiler infrastructure for analyzing and transforming programs and
metaSMT as a generic API interface to different SAT and SMT solvers.

Formal Verification, Automated Debugging, and Software Test Generation 5

References

1.
2.

10.
11.

12.
13.
14.

15.
16.

17.
18.
19.

20.

21.

22.

C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard version 2.0, 2010.
A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 193-207, 1999.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Symposium on Operating
Systems Design and Implementation, pages 209—224, 2008.

V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-
path analysis of software systems. In Conference on Architectural Support for
Programming Languages and Operating Systems, pages 265—278, 2011.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 168—176,
2004.

E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7-34, 2001.

J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97-130, 1987.

A. Groce, S. Chaki, D. Kroning, and O. Strichman. Error explanation with distance
metrics. International Journal on Software Tools for Technology Transfer, 8(3):229-
247, 2006.

F. Haedicke, S. Frehse, G. Fey, D. Grofle, and R. Drechsler. metaSMT: Focus on
your application not on solver integration. In International Workshop on Design
and Implementation of Formal Tools and Systems, pages 22—-29, 2011.

D. Kroning. Software verification. In A. Biere, M. Heule, H. van Maaren, and
T. Walsh, editors, Handbook of Satisfiability, pages 505-532. IOS Press, 2009.

M. Vujosevié-Janic¢i¢ V. Kuncak. Development and evaluation of LAV: An SMT-
based error finding platform. In International Conference on Verified Software:
Theories, Tools and Experiments, pages 98—113, 2012.

C. Lattner. LLVM: An infrastructure for multi-stage optimization. Master’s thesis,
University of Illinois at Urbana-Champaign, 2002.

C. Lattner and V. Adve. LLVM language reference manual, 2012. Last visit on
27th of March, 2012.

G. Li, I. Ghosh, and S. Rajan. KLOVER: A symbolic execution and automatic test
generation tool for C++ programs. In Conference on Computer Aided Verification,
pages 609-615, 2011.

L. McMillan. Lazy annotation for program testing and verification. In Conference
on Computer Aided Verification, pages 104—118, 2010.

F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded model checking of C and C++
programs using a compiler IR. In International Conference on Verified Software:
Theories, Tools and Experiments, pages 146-161, 2012.

D. A. Ramos and D. R. Engler. Practical, low-effort equivalence verification of real
code. In Conference on Computer Aided Verification, pages 669—685, 2011.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57-95, 1987.

H. Riener, R. Bloem, and G. Fey. Test case generation from mutants using
model checking techniques. In IEEE International Conference on Software Testing,
Verification, and Validation Workshops, pages 388 — 397, 2011.

H. Riener and G. Fey. Model-based diagnosis versus error explanation. In In-
ternational Conference on Formal Methods and Models for Codesign, 2012. In
Review.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Symposium on Princples of Programming Languages,
pages 12-27, 1988.

G. S. Tseitin. On the complexity of derivation in propotional calculus. In Automation
and Reasoning: Classical Papers in Computational Logic 1967-1970, 1983. Originally
published in 1970.

6 Formal Verification, Automated Debugging, and Software Test Generation

Part II: Oral Tool Presentation

Informal Plan

The presentation is structured similarly to the paper but elaborates on experi-
ments for specific applications. The experimental results are partially published
for fault-based test generation [I9] and currently under review for fault localiza-
tion [20].

Firstly, we start with a brief introduction which gives an overview of BMC
and the LLVM compiler infrastructure.

Secondly, we discuss the traditional BMC approach for software programs
as implemented, e.g., by CBMC (including loop unrolling) and contrast it with
the more recent trend to formalize the Intermediate Representation (IR) of a
compiler. In particular, we discuss the formalization of LLVM’s IR into logic by
example.

Thirdly, we present the architecture of our framework FAuST and its main
features, that are, (1) a flexible structure built on the LLVM compiler infras-
tructure, (2) dynamic execution using Just-In-Time (JIT) compilation, (3) an
abstraction layer for decision procedures leveraging metaSMT, and (4) parallel
solving using multiple SAT and SMT solvers simultaneously. We comment on
different applications currently integrated into the FAuST framework.

Next, we show a case study for two selected applications: fault-based test
generation (partly published in [I9]) and fault localization [20] (in review). For
the presentation, we use the ANSI-C program TCAS from the Software-Artifact
Infrastructure Repository (SIR).

Lastly, the presentation is concluded with a summary and outline.

Structure of the Presentation

1. Introduction
1.1. Bounded Model Checking (BMC): An Overview
1.2. LLVM and Recent Trends in Compiler Construction
2. Preliminaries
2.1. The CBMC Approach
2.2. ANSI-C — Logic
2.3. Loop Unrolling
3. Formalizing LLVM-IR
3.1. LLVM-IR — Logic
3.2. Example
4. FAuUST
4.1. Architecture of FAuST
4.2. Main Features
4.3. Applications
5. Case Study and Experimental Results
5.1. Benchmarks
5.2. Fault-Based Test Generation
5.3. Fault Localization
6. Summary and Outline

	Lecture Notes in Computer Science
	Introduction
	Formalizing LLVM-IR into Logic using BMC
	Applications
	Formal Verification
	Automatic Debugging
	Test Generation

	Conclusions

