Context-Bounded Translationsfor Concurrent
Software: An Empirical Evaluation*

Naghmeh Ghafatj Alan J. Hif, and Zvonimir Rakamarfc

1 Critical Systems Labs, Vancouver, BC, Canada
naghmeh.ghafari@cslabs.com
2 Department of Computer Science, University of British Qohia, Canada
{ajh,zrakamar }@cs.ubc.ca

Abstract. Context-Bounded Analysis has emerged as a practical angkssic
ful automatic formal analysis technique for fine-grainddred-memory concur-
rent software. Two recent papers (in CAV 2008 and 2009) hawpgsed inge-
nious translation approaches that promise much betteatsitigt, backed by com-
pelling, but differing, theoretical and conceptual adegets. Empirical evidence
comparing the different translations, however, has beekirg. Furthermore,
these papers focused exclusively on Boolean model checigngring the also
widely used paradigm of verification-condition checkingthis paper, we under-
take a methodical, empirical evaluation of the three main@®to-source trans-
lations for context-bounded analysis of concurrent saféwén a verification-
condition-checking paradigm. We evaluate their scalgbilnder a wide range
of experimental conditions. Our results show: (1) The neéw@aV 2009 transla-
tion is the clear loser, with the CAV 2008 translation thetbesnost instances,
but the oldest, brute-force translation doing surprigingell. Clearly, previous
results for Boolean model checking do not apply to verifmattondition check-
ing. (2) Disturbingly, confounding factors in the experimed design can change
the relative performance of the translations, highligiptihe importance of ex-
tensive and thorough experiments. For example, using erdiif (slower) SMT
solver changes the relative ranking of the translationgmitally misleading re-
searchers and practitioners to use an inferior transla8rSMT runtimes grow
exponentially with verification-condition length, butfdifent translations and pa-
rameters give different exponential curves. This suggésiisthe practical scal-
ability of a translation scheme might be estimated by combithe size of the
queries with an empirical or theoretical measure of the derity of solving that
class of query. Taken altogether, our results highlightatueial importance of
extensive experimental evaluation, provide practicatignce for using context-
bounded analysis for research or application, and outlitfellp and questions
for further research as these and other translations asaped and improved.

1 Introduction

The original application for model checking was concurmeaftware, in the form of
protocols (e.g., [9, 18]), and concurrent software cor@@to be a major impetus for

* This work was supported by a Microsoft Research Graduatewstip and the Natural Sci-
ence and Engineering Research Council of Canada.

model checking. With changes in technology, new versionthefsoftware model
checking problem emerge. Currently, due to architectunal electrical constraints,
Moore’s Law is manifesting itself via an exponential growtiprocessor cores per chip,
rather than the formerly exponential improvements in @irthreaded performance. The
resultis a push for vastly greater levels of fine-grainedrsti-memory concurrent soft-
ware — in addition to classical message-passing and cagiaseed protocol-level con-
currency — even in the most mundane applications. Such acétneeds verification.

Itis possible, of course, to model check such software tireand several pioneer-
ing systems provide that capability (e.g., [13, 19, 10, 32Re state space is the cross
product of all program variables, stacks, heaps, and pnogunters for all threads,
and this state space can be explored as a transition systenoblious challenge is ex-
treme state explosion (if variable domains, stacks, andonesare modeled as finite)
and/or theoretical undecidability (if any are modeled dimite).

Context-Bounded Analysis (CBA) [26] promises a way aroumese challenges.
Analogously to bounded model checking [8], the user speaciieinteger constant that
bounds the maximum number of execution contexts (i.e.pderof a thread running
between context swaps) to be considered, and all conc@xentitions up to that bound
are analyzed. The downside, of course, is that if a bug reguirore than that bound to
manifest, it will be missed. The upside is that CBA reducesahalysis of concurrent
software (under the context bound) to the analysis of se@iesoftware. In theory,
the advantage is that CBA is NP-complete [25, 23], wherelhs@mcurrent software
analysis is undecidable (even with finite variable domant@o heap, due to the call
stack). In practice, CBA has proven its ability to detectcheoncurrency bugs in real
software, and many approaches rely on context-boundingcide the complexity of
concurrent software (e.g., [26, 27,24, 17, 30, 21, 20]).

The original CBA paper [26] used a source-to-source tradioslaf concurrent to se-
quential program text, and subsequent work has followedapproach. The approach
enables CBA to exploit all of the tools and algorithms forifieation of sequential
software, e.g., including the use of logics and decisiort@dores for reasoning about
unbounded data domains, arrays, and heap-allocated mdremgnt papers by Lal and
Reps [22] and by La Torre, Madhusudan, and Parlato [31] heyggsed two ingenious
and radically different source-to-source translations@G8A. These translations are
more general than the original, but more importantly, thiégracompelling theoretical
and conceptual arguments for much better scalability. Irabhd Reps’s paper (hence-
forth referred to as LR in this paper), the key theoreticaleate is the elimination of
the exponential cross-product of the local states of thexsitis, at the expense of intro-
ducing multiple non-deterministic symbolic variables teegs the values of the shared
global variables at context switches. La Torre, Madhusudad Parlato’s paper (LMP
in this paper) retains the theoretical advantage of LR, ddsdlaziness” — instead of
non-deterministic guesses, variables can assume only tahises that are actually pos-
sible during a real concurrent execution — at the expenseeding to recompute the
values of local variables at context switches. (More on b@thslations in Section 2.)
Both papers support their arguments with runtimes on a hé&wéEmall Boolean pro-
grams, e.g., the popular “Windows NT Bluetooth driver’ided example [26].

Given the very different approaches, with differing trazfés (local state cross-
productvs. symbolic variables vs. recomputation), andtdichexperiments (small Bool-
ean programs model-checked with Moped [15]), it is hard sadmore general con-
clusions about what will work well in practice, under diffeg conditions. In particular,
finite-state (or PDA) model-checking of highly abstractembian programs (e.g., [2,
15, 7]) is only one of the major approaches for automatic fdrsoftware verification.
Another main paradigm is verification-condition (VC) gemtér?, with the resulting
VC checked by a SAT or SMT solver (e.g., [16, 3,5, 6,29, 1, 2BNT/SMT solvers be-
have very differently from the BDDs used in Boolean modelotlireg, so experimental
results in the VC-checking paradigm are especially needed.

This paper addresses those needs. We undertake a methedipaical evaluation
of the three main source-to-source translations for ca+iitexnded analysis of con-
current software, in a VC-checking paradigm. We considelL P approach, the LR
approach, and a straightforward generalization of thestedion given in the original
CBA paper [26]. We evaluate how they perform under vastlyerexperimental con-
ditions than previous work, and also measure scalabilitgpuseprogram length, which
was not done before. Some of the results are surprising ¢¢dgr methods outperform-
ing newer ones), and some are disturbing (e.g., the extahttimfounding factors can
influence results). Taken altogether, our results highligé crucial importance of ex-
tensive experimental evaluation, provide practical gon@defor using context-bounded
analysis in a VC-checking paradigm for research or apptinatand outline pitfalls
and questions for further research as these and otherdtiams are developed and
improved.

2 Context-Bounded Translations

We use a standard model of shared-memory concur- Thread Thread Thread

rent software. There aré threads, each with its own lo- 1 2 3
cal variables and program code. The only communication . j
between threads is via a set of global shared variables,

which all threads can read or write. (Writes to a global oc- o)
cur atomically: when a thread writes to a global, the new]

value isimmediately visible to all threads.) At all times; e /
actly one thread is running. At a context switch, the current . ;/_ N
thread relinquishes control to another thread (determined \ A
by the scheduling policy), which proceeds to execute start- 1

ing from wherever it last gave up control, with whatever

values its local variables had at that time and the currdnegeof the global variables.
Context switches occur non-deterministically at any paintime. The figure to the

right shows the concurrent execution of three threads. Thgram code executed by
each thread is depicted by the sequence of dark, verticalariEach of those arrows
represents one “context” — an uninterrupted period whentbread runs its code.
The dashed arrows represent context switches, which oceoudaterministically, and

transfer control to a different thread.

3 AVC is a logical formula whose validity implies partial ceatness of the code for which it
was generated. VCs are typically constructed via weakesppdition or symbolic execution.

When a context switch occurs, which thread runs next is deted by a scheduling
policy. Two policies are common in CBA: round-robin and &dny. In round-robin
scheduling, the context switch is always to the numericaéyt thread, moduld .
Hence, execution proceeds in a series of rounds, duringwégch thread gets a chance
to execute once at its turn. In the preceding figure, the sdbéslround-robin, and the
light (cyan) solid curved lines demarcate the three rouhdsrbitrary scheduling, a
context switch can jump to any thread, non-determinidicathosen. Obviously, the
schedules permitted by round-robin wKhrounds is a subset of the arbitrary schedules
with K- T contexts. Conversely, the schedules permitted by roubhihireith K rounds
is a superset of the arbitrary schedules wittcontexts, since a thread can execute
zero instructions before another context switch occurgash round of round-robin
can simulate one context of an arbitrary-scheduled thi@ativeen these two bounds,
neither policy dominates the other.

We now survey the three main source-to-source translafmn€BA under this
model. For space reasons, we give only some brief intuitoeéch.

2.1 Explicit Program Counter (EPC)

We dub our first translation “Explicit Program Counter” (EPChis is the obvious,
brute-force approach and is a straightforward generaizatf the original CBA pa-
per [26] (where they restricted themselves to two context@s in order to permit an
efficient implementation via the procedure call mechanism)

For the EPC translation, the state of the sequential progralndes all of the local
variables, including the program counters, of all of the#us. The code of the sequen-
tial program consists of the code of all of the threads comdbinto a single program.
However, at each possible location for a context switch, (between every adjacent
pair of accesses to global variables), we insert code thrahoa-deterministically de-
cide to simulate a context switch. The context switch codesists of choosing the next
thread to run (based on the scheduling policy), and thenijgp the correct location
in that thread based on its stored program counter. The séguprogram starts ex-
ecuting at the beginning dfhread for round-robin or with a non-deterministic jump
to the beginning of an arbitrary thread for arbitrary schiedu An auxiliary variablek
counts how many contexts have run. The sequential progranirtates wheik reaches
the context boun&, or when all threads have executed all of their code.

This translation is simple and has linear static and dynaote size versus the con-
current program. However, at each point during executlmprogram state consists of
the cross-product of all local variables and the globalalags, potentially producing a
complexity blow-up.

2.2 Lal-RepsCAV 2008 (LR)

The LR translation eliminates the EPC complexity blow-ugha expense of introduc-
ing symbolic prophesy variables to guess the values of teethat are not yet known.
The basic construction is to execute each thread one-byndtseentirety, in sequence,
i.e., all of Thread, then all ofThread, then all ofThreag;, etc. Accordingly, the static
and dynamic code size are unchanged from the original pnogfarthermore, since

each thread executes in its entirety, without interrupfrem the others, there is no
need to keep the local state of a thread after it is done, blgexkminating the blow-up
of the local state cross-product.

The construction in the preceding paragraph would producagvresults, since
it ignores the fact that in the concurrent program, a corgestch could occur at any
point and change the value of global variables. Worse, tscae are executing the
threads sequentially one after another, the results caedpyt the other threads might
not be known until much later in the sequential execution!

The solution is to creatl copies of the global variables, wheleis the bound
on the number of round-robin rounds. Tk copy contains the values of the global
variables during théth scheduling round. Since we will not know what values these
variables will contain until the program completes, weialite allK copies with non-
deterministic symbolic values. An auxiliary variatkdén each thread keeps track of
which round is executing; all accesses to globals are irtiélxmughk. A context
switch during the execution of a thread, therefore, cossgshply of increasing,
which results in a switch to the correct set of global vaeshfior that round. Hence,
at each possible location for a context switch, we inseredbdt non-deterministically
increasek. At the end of the program, we usssume statements to enforce that the
results in the copy of the globals at the end of rouate equal to the non-deterministic
symbolic values we used to initialize the copy of the glolfaighe start of round+ 1.

In effect, the translation is computing symbolic summafiesach round and stitching
them together viassume statements at the end.

Note that this construction is intrinsically round-robBecause the threads are ex-
ecuted in order 1.., T, whereT is the number of threads, the values of the globals
in each round pass automatically from antyread to Thread ;. The symbolic values
and stitching are required only between rounds.

2.3 LaTorre-Madhusudan-Parlato CAV 2009 (LM P)

Because LR is constructing symbolic summaries from uncaim&td symbolic values,
it might explore expensive, infeasible regions of the statece, only to eliminate them
in the end using thassume statements. LMP avoids this problem by introducing “lazi-
ness” — instead of non-deterministic guesses, variablesasaume only those values
that are actually possible during a real concurrent exeoufFor comparison purposes,
the LMP paper also introduces an eager translation sinailéire LR translation. In this
paper, LMP refers to their lazy translation.)

LMP with a bound oK contexts starts with a non-deterministic schedule ., tx,
wheret; € [1,...,T] contains the identity of the thread to execute duringtineontext.
As in LR, there ar& copies of the global variables, but these are assigned srihedr
values are computed. Like EPC, execution in the LMP traiasidbllows the same or-
der as the concurrent execution — a context switch is an Ejctug to the next thread
in the schedule. Unlike EPC, however, the local state ofestthis completely discarded
when context-switching away from it, thereby eliminatihg tocal-state cross-product
blow-up. How can a thread resume where it left off after a exnswitch? The solu-
tion is to recompute the thread'’s local state! In other wptltls context-switch code is
considerably more complicated, as it will re-execute aatireom the beginning each

time a context switch to it occurs, but during re-executtbe,values of the global vari-
ables at earlier context switches are already known. Intthggmce of non-determinism,
correctness of this construction is not obvious, since ¢temputed local state might
be different from the one that occurred when last executinthis thread — a subtle
correctness argument is needed to show that no additiohalvis are introduced.
The resulting translation has the best attributes of bottfiddocal-state blow-up) and
EPC (no exploration of infeasible states), but at a costoarhlp in the length of the
dynamic code paths that must be executed/analyzed. The LagBrprovides some
experimental results showing the translation greatly ediggming their version of LR,
but only in the Boolean model checking paradigm, and on amdygmall examples: an
artificial example specifically constructed to illustrate benefit of lazinessand the
aforementioned “Bluetooth driver” benchmark. How the noethcompare as program
size grows, and under the VC-checking paradigm, are opestiqus.

3 Experimental Methodology and Results

Obviously, the ultimate test of these translations is theiformance in the wild on real
software. In our experience applying CBA to real, indust@de [21], a crucial factor
was scalability to larger code sizes, so the paramount diifoerfor our experiments
is scalability with respect to code length. For scalabitignchmarking, however, real
code has a fatal flaw: the code length is not scalable.

Accordingly, we crafted a microbenchmark that is scalaldagthe three key prob-
lem parameters: the number of threddghe context bound, and the length of the
program code in each thread To avoid confounding factors, we distilled our bench-
mark to only the essentials:

int x =0;
X+ 4+ X+
L : :
X+ 4+ X+
assert 0 < x; assert 0 < x;
T

The benchmark has a shared global variablghich is initialized to 0. Thenl threads
are spawned. Each thread consists aficrements ofk followed by an assertion that
checks ifx is greater than 0. Despite its simplicity, this microbenelnkstill has the key
elements of the concurrent software model: local stateftbgram counters), shared
global statex, and long data-dependency chains that grow with code sidevarst
be inspected in order to prove the assertions, capturingsenéal aspect of program
scaling. The microbenchmark does not have procedures ps leoin the VC-checking

4 In their “permutation” example, an interlock serializetthreads, the first thread zeroes out
16 bits, and the second thread computes all permutatiomedf@ bits. With laziness, the bits
are all zero, so the permutation is vacuous; without lazinge second thread explodes.

paradigm, these are handled via invariants. Note that #icpilar microbenchmark
could easily be solved via other means, since it has a smaé Btate space. That is
not the point. This is a “test tube” experiment, to identifydeeliminate confounding
factors while measuring scalability. If a translation ssgboorly on this benchmark, it
will not fare well on real code.

For each of the three translations, we encoded in BoogiePLnfililtiple instances
of this benchmark by varying i, K, andL parameters. BoogiePL is the input language
of the BooGIE verifier [3], which generates a verification-condition (V&£dm the
input program. The VC generation in0®GIE is performed using a variation of the
standardveakest preconditiotransformer [14]. This translation is linear in the input
code size; combined with the linear static code-size expams the three translations,
all three translations produce linear-size VCs, albeitiffering complexity (LMP the
most complex; LR the simplest). We checked the VCs genefetadour benchmarks
using the Z3 SMT solver [11], except where indicated otheewT he experiments were
performed on four identical machines (Intel Xeon 5160 at 2G¥ith 2GB RAM),
running Z3 continuously for weeks. We report the solverisning times, and the time
outis setto 2 hours.

As an additional sanity check, we also performed experimentthe Bluetooth
driver example [26]. The original benchmark has two threads‘adder” and a “stop-
per”. We artificially scaleT by adding adder threads. We atrtificially scale code length
by repeating (i.e. copy-pasting) the body of the adder tisgthe parametdr denotes
the number of such repetitions.

Figs. 1-10 present our main results. Details and interpoetaf each experiment
are in the accompanying captions. Full experimental datibcamplete results graphs
are available atttp://people.cs.ubc.ca/"naghmehg/spin2010-results

4 Conclusions

The primary, practical take-away conclusion of this pagethat LMP is not compet-
itive in the VC-checking paradigm. This radical reversatedently published results
highlights the difference of Boolean model checking vetéGschecking. Both are im-
portant, and our experiments show that they need differanstations.

Our experiments suggest that LR is likely the best trarmtdior the VC-checking
paradigm, under most experimental conditions, and withezurstate-of-the-art SMT
solvers. LR is also particularly easy to implement, makingur recommendation for
VC-checking-based research prototypes for CBA. Surpgigjrthe superiority of LR
to LMP holds even with arbitrary schedules, when LR is at difi@al disadvantage.
Given that LR withK round-robinroundsoutperforms LR withK arbitrary contexts,
there is no efficiency argument for using arbitrary scheslule

Another surprise was how well the brute-force EPC transtatiid, beating LMP
in almost all experiments and LR in a few. In the VC-checkiagaaligm, the power
of SMT and SAT solvers to quickly prune irrelevant parts of gearch space and to
propagate information in any direction perhaps lessenisghefit of translation insights
like laziness or state space reductions, benefits that nigtke a big difference for

T=1,K=1 T=2,K=1

250 250
“““““ LMP
200 —=— EPC 200
— — % —LR —
3 150 9 150
2 0
@ ko3
E 100 £ 100
50 50
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=1, K=2 T=2,K=2
250 8000
200 - 6000 <— EPC timeout
o o
&)
T % 4000
£ £)
= = «€— LMP timeout *
2000 ,
g Foxk K
5 et 0
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=1,K=3 T=2,K=3
8000 8000

< LMP timeout

6000 6000 ‘eEPC *

. \

> = timeout | | & LR timeout
@ 9] I
2
& 4000 & 4000)
£ E |

2000 2000 **

*
0 Gy W g 0 ek K *
0 20 40 60 80 100 40 60 80 100
length of thread length of thread
T=1,K=4 T=2, K=4
8000 8000
LR timeout

6000 <« EPC timeout 6000 /* <
) - o /
(7] Q .
£ 4000 £ 2000 LMP timed out
g g atL=5

2000 2000 [(— EPC timeout

0 (e g s g 0 . . ,
0 20 40 60 80 100 0 60 80 100
length of thread Iength of thread

Fig. 1. Baseline Comparison. This and Fig. 2 show a representative sample of our basedime ¢
parison (round-robin scheduling, Z3 as SMT solver), with tlumber of thread$ < [1,...,4]
(going across the pages), the context bolnd [1,...,4] (going down the page), and the length
of each thread’s program cotlgoing from 510,... up to 100. (Caption continues on next page.)

T=3,K=1 T=4, K=1

250 8000
“““““ LMP
200 —>—FEPC| = 6000
'g 150 — % —LR :; ’g
= L & 4000
£ 100 o £
2000
50 S
obx W%@%m D O L s e)
o] 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=3, K=2 T=4, K=2
8000 8000
6000 6000
g g : ‘<, LMP timeout «
o 4000 ‘(— LMP timeout * o 4000 - *\
£ : \LR timeout £ : /
= : / = : / sﬁ‘e LR timeout
2000f i * ¥ 2000{ - EPC
: ‘(— EPC timeout oy X‘(- E ‘e timeout %
o j Kk < * 0 J F ¥ K
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=3, K=8 T=4, K=3
8000 8000
. ‘(—LMP timeout ﬂ(- LR timeout
6000 6000 |
g <« EPC timeout ’g /
T 4000 : < 4000 / i
[} [} LMP timed out
£ ﬁ(—LR timeout £ % atl=s
2000 /! 2000 S
%M % (—% EPC timeout
[0 L
o] 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=3, K=4 T=4, K=4
8000 8000
LMP timed out LMP and EPC
6000 atL=5 6000 timed out
o S atL=5
¢ il 000
T 4000 % 4 <«— LR timeout
g «|<€—LR timeout E *
= / = !
2000 x|<€— EPC timeout 20001 1
* i
0 ol
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread

Fig. 2. Basdline Comparison (cont’d). Surprisingly, LR beats LMP, contradicting the results
in [31], and furthermore, even EPC beats LMP. The differeqeeimental conditions in [31]
likely explain much of this reversal: (1) While EPC and LMP wat suffer particularly under
round-robin scheduling, LR has an intrinsic advantage.lfZhe VC-checking paradigm, the
benefit of laziness is unclear, since the solver can propagairmation in any direction. (3) On
the other hand, LMP’s longer dynamic code paths generate pmnplex VCs.

Default Relevancy=2 Results

T=2, K=2 T=3, K=2
8000 e 8000
II;\PAP LMP timed out
atL=5
6000 N - * —LR 6000
B C ! “T—R timeout B *‘e LR timeout
2 EP /)
& 4000 ‘(— fimeolity & 4000 /
£ LMP ; E EPC /
20001 timeout o 2000 "meou%
_ * <
0 *‘fmxd‘e**\ . , 0 XLV*/ . . . ,
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=2,K=3 T=3,K=3
8000 8000
LMP and EPC
6000 6000 timed out
—~ i — atL=5
3 EpC ;4(—LR timeout S
L timeout 5
2 4000 / LMP timed out 2 4000 *k‘ LR timeout
= ‘(-/ atL=5 B /
2000 ! 2000
% !
0 et 0l
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
Relevancy=1 Results
T=2,K=2 T=3, K=2
8000 8000
*
6000 6000 I
2 LMP timeout g L ;,%‘
2 4000 ‘(— EPC timeout] 4000 '(—EPC timeout + "R
= - = ti t
2000 - % 2000 /% fmeou
> " .| <—LMP timegut A
o i 0 Jm Wi o
o] 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=2,K=3 T=3, K=3
8000 8000
*‘e LR timeout LMP timed out
6000 <-EPc 6000 atL=5
g timeout g
g 4000 / T.Ej 4000
= % ! LMP timed out = EPC
2000 Y atL=5 2000 timeout
* 'ﬁ)&‘(— LR timeout
obhre*® 0L’
20 40 60 80 100 0 40 60 80 100
length of thread length of thread

Fig. 3. Sengitivity to Z3 Parameter Tuning. For the baseline results, we had performed informal
tuning of Z3 parameters. The only setting that we changenh filte defaults was “relevancy
propagation heuristic” that affects quantifier instambiatand assertion of atoms in the solver.
We set it to O for best performance. Given the surprisingltgsthough, it was imperative to
run with different relevancy settings, to ensure we had matvertently biased our experiments.
For space reasons, we show only four graphsT{#t € [2, 3], the smallest non-degeneraledr

K = 1) cases. The results are qualitatively the same: LR wins? llddes.

T=3, K=2

T=2, K=2
8000 <p e 8000 {< EPC timeout |‘
Z 2 §
6000 timeout EPC 6000 §
— S < [LR - N
Epc 2
o 4000 timeout o 4000 §
2000 ||||| 2000 m“““"
i LMP i t |
....... .-ullllIIIII € fmeou |||I||I||um-I||||
0 g T 0 i , il
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=2, K=3 T=3, K=3
8000 ('EPC LR timeout 8000
NI EPC timeout
6000 y [fimeout sooof | <)
5 N 5 LR timeout
@ N o]
%) N)
T 4000 N % 4000
£ N LMP timed out £ | LMP timed out
2000f | ||||| atL=10 2000 ||| atlL=10
il |
ol " il
0 20 40 60 80 100 0 20 40 60 80 100
length of thread

length of thread

Fig.4. Sensitivity to Random Perturbation. SMT solvers, like SAT solvers, are notoriously
temperamental. To assess the robustness of our resultspeated all of the baseline experiments
three additional times, with different random number seddese graphs show the range of

performance across different seeds. Although times vamgiderably, there is almost no overlap
between the translations. We can conclude that the basebuéis are robust.

a Boolean model checker. However, SMT/SAT solver perforrean quirky, highly

dependent on heuristics, and hard to predict.
Fortunately, our experiments suggest an avenue for piediperformance. SMT
runtimes tend to grow exponentially with VC length, but thiéedent translations and
parameters give different exponential curves. This sugdkat the practical scalability
of a translation scheme might be predicted by combiningitteeaf the queries gener-
ated with an empirical or theoretical measure of the coniplex solving that class of
query. As a crude heuristic, pick translations that keep $i@st and simple.

Disturbingly, our experiments also highlight experimépitfalls and confounding
factors. For example, using an older, slower SMT solver gkarhe relative ranking of
the translations, implying that practical performancestets more on the interaction of
a translation with a given SMT solver than on theoreticaperties of the translation in
isolation. If another revolution in SMT solving occurreldese translations would need
to be re-evaluated. Similarly, the relative ranking of slations was sometimes differ-

ent in small, degenerate corners of the parameter spadermarg only a few exper-
iments, as if often done in this research area, could easiyrgisleading results. Our
results can be used as a cautionary map, clarifying the tapes(e.g., VC-checking vs
Boolean model checking) and highlighting pitfalls (e.geuhe fastest solver, conduct
thorough experiments). These are not happy results, butateecritically important,
since they challenge the assumptions and methodologiespinding further research.

T=1,K=1 T=2, K=1
8000 8000

6000 —=—EPC 6000

4000 4000

time(sec)
time(sec)

“<, LMP timeout
2|

2000 : 2000
B <<~ LMP timeout
O Mo ——————k——k——k——k————* O b ——k——f————————k——k————%
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=1,K=2 T=2,K=2
8000 8000
LMP timed out
6000 6000 atL=1
’g 'g l— EPC timeout
% 4000 T 4000
£) £
= *&(— LR timeout =
2000 I 2000
< i LR timeout
| LMP timeout *
0 N@ 0
o] 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread

Fig.5. Sensitivity to SMT Solver. A key question is whether our results are specific to Z3. We
undertook to re-run our experiments with all publicly ashie SMT solvers that can handle the
needed logic. Becaused®GIEgenerates VCs with quantifiers, from the 2009 SMT Compeitjtio
the only other suitable solver is CVC3 [4]. Performance wasimworse, so we have results only
for the smallest values df andK. Disturbingly, the performance order changes: EPC is tharcl
winner in these experiments. The choice of SMT solver dateswhich translation performs
best! Experimental evaluation, therefore, should alwagtide multiple solvers, or at least the
fastest one available. Using a slower solver can produckeatigg results.

Finally, it is thought-provoking to consider how poorly tiitee translations scale on
our microbenchmark. As noted earlier, the microbenchrmeédasily solvable by other
means, e.g., even the largest parameter configuration wedeosad T = 4, K = 4,

L = 100) yields a state space of roughly only 1.6 billion stafe0(program counter
locations for each of 4 threads times a 4-valued contexttestimes a 4-valued pointer
that indicates the active thread), within the reach of evaatigt-state model checking.
Yet, none of the translations, under any experimental setaqme anywhere close to
those parameter values. There is an odd disparity betweeamntiple empirical proof of
the practical success of CBA (including our own work, findiegl bugs in real indus-
trial software, using the same LRe®GIE-Z3 tool chain, albeit augmented with some
abstraction techniques [21]) and its poor scalability h&he explanation, we believe,
is that the power of CBA with VC-checking comes from the apilo reason about and
soundly abstract software features like large memoriegp$ieand recursion, but not
from the core exploration of interleavings, which is wheeessical model checking ex-
cels. We speculate there may be promising hybrids betwestihapproaches, or that
CBA will dominate bug-finding in low-level software implemiations with explicit-
state model checking dominating protocol-level softwamgfication, much as bounded
model checking and explicit-state model checking complareach other in hardware
verification.

T=1, K=1 T=2,K=1

8 8
“““““ LMP
6 —>—EPC 6
— — % —LR —
[S) (%)
) &
T 4 g 4
£ £
2 2
o PR o
R AR 0 wawv&;‘«)‘&‘&‘hmwu*
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=1, K=2 T=2, K=2
1000 1000
800 800
2 600 2 600
& &L
@ @ oy
£ 400 £ 400 S X
200 -~ 7%**7*4 ’
‘ 0) ix***
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=1,K=3 T=2,K=3
8000 8000
6000 6000
o B i
I @ <« LR timeout
% 4000 & 4000 %’
E E % |<~LMP timeout
= = | *
/N
2000 2000 S O¥
A
0 e
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=1, K=4 T=2, K=4
8000 . 8000
<« LR timeout
. ‘ .
Cl<— .|« LMP timeout
6000 ‘ < [fwp 6000 <
9 EPC - timeout g ﬁe LR timeout
£ 4000 timeout & a000f 3
£ £ b ‘<~ EPC timeout
2000 2000 j
0 kK . oL
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread

Fig. 6. Resultswith Arbitrary Scheduling Policy. As noted earlier, our baseline results are with
round-robin scheduling, and with all translations analgzihe same number of contexts, to be
fair. This and Fig. 7 show the results using an arbitrary dahig policy withK total contexts,
also with all translations analyzing the same number ofexdst Now, there is no clear winner.
LMP clearly does best in the degenerdte= 1 cases. EPC wins in several of the mid-sized
configurations. And LR is the last to timeout B@ndK grow larger. (Caption continues on next
page.)

time(sec)

time(sec)

time(sec)

T=3, K=1

“““““ LMP
6 —>—EPC
. — % —-LR
[S)
)
o 4
E
2 PR /%K *
0 Lo s Sk D e E e
0 20 40 60 80 100
length of thread
T=3,K=2
8000
LMP
6000 timeout
o<
4000 N
2000 -
0 Leseseden g‘ﬂ; 0
0 20 40 60 80 100
length of thread
T=3,K=3
8000
6000
4000 |«€—LMP timeout
;%(‘eEPC timeout
2000 3 LR timeout
J
0%
0 20 40 60 80 100
length of thread
T=3,K=4
8000
6000
4000 .
*‘(—LR timeout
I
2000 /
EPC timeout
1€~ LMP timeout
0 20 40 60 80 100

length of thread

time(sec)

time(sec)

time(sec)

T=4,K=1
8
6 ¥
o /
i *
ag 4 W e
= 5 e ‘o *
2 oy * * ¥
S SO 4
ol L ot x
0 20 40 60 80 100
length of thread
T=4,K=2
8000
6000
4000 LMP timeout *
Y
2000 5 <+ EPC
timeout
0 .
0 20 40 60 80 100
length of thread
T=4, K=3
8000
*‘(—LR timeout
6000 !
I
¢ LMP timeout
4000 L<~ EPC timeout
I
2000 !
*
0L
0 20 40 60 80 100
length of thread
T=4, K=4
8000
EPC timed out
6000 atL=5
4000
<<— LR timeout
2000
“<€—LMP timeout
0
0 20 40 60 80 100

length of thread

Fig. 7. Results with Arbitrary Scheduling Policy (cont’d). It would be easy to draw incor-
rect conclusions about algorithmic superiority if only shparts of the experimental space are
explored, as is often the case. Interestingly, LR WMtlarbitrary contexts performs worse than
LR with K round-robinroundd The explanation is that LR is intrinsically round-robirg the
arbitrary-schedulé&-context translation is essentially doing a round-rolinound translation,
plus extra work to ensure that only one context executesdh ezund. We present here results
for arbitrary-schedule LR only for fairness; it is pointdga practice.

T=2,K=1 T=3, K=1

250 8000
““““ LMP +|[<€—LMP timeout
200 < EPC 6000 :
- — % —-LR —
§ 150 §
T & 4000
£ 100 £
50 2000
PN
0 ok O
0 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=2,K=2 T=8,K=2
8000 8000
LMP .
6000 6000 timeout H(—LR timeout
o o /
@ @ .| <
< 4000 & 4000 ‘ /’
E £ ‘(« EPC timeout
2000 St LMP timeout /;.Q X 2000
0 . . . ,
40 60 80 100
length of thread length of thread
T=2,K=3 T=3,K=3
8000 8000
. LMP timed out
6000 | < LMP timeout 6000 atL=5
S - EPC timeout =
) * b3)
g 4000 ; <~/, *(—LR timeout \UE—; 4000 l— EPC timeout
= = LR timeout
2000 * 2000 A <
* ¥
: * 4
0 Lyl x ® 0
o] 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread
T=2,K=4 T=3,K=4
8000 8000
. LMP timed out
6000 <«<— EPC timeout 6000 atL=5
Ty *‘(_LR timeout =)
2 4000 | < TLmp timeout & 4opo} X[EPC timeout
- /
g / g *| <«— LR timeout
2000 * 2000
*
0 = A 0
o] 20 40 60 80 100 0 20 40 60 80 100
length of thread length of thread

Fig. 8. Results for Bluetooth Example. As a check of our results, we also evaluated the three
translations on the popular “Bluetooth driver” exampleeTdriginal example had two threads:

an “adder” and a “stopper”. To scale the number of threads;reated additional adder threads.

T indicates the total number of threads. tarts at 2 in these graphs because we need at least
1 adder and 1 stopper.) To artificially scale program lengthduplicated the body of the adder
threadsL indicates the number of copies of the original code in eackatth The runs are under
the baseline conditions: round-robin scheduling with Z3h&sSMT solver. (Caption continues

on next page.)

T=4,K=1

8000
“““““ LMP
6000 —>—EPC
—~ — % —LR
(5]
)
E’ 4000
= . [« LMP timeout
2000
] D e a s L
0 20 40 60 80 100
length of thread
T=4, K=2
8000
6000
g k— EPC timeout
2
j.E-; 4000
= % LR timeout
2000 /
LMP timeout
0 ,
0 20 40 60 80 100
length of thread
T=4, K=3
8000
LMP timed out
6000 atL=5
°
)
& 4000
£
2000 — LR timeout
¥ |~ EPC timeout
0 ,
0 20 40 60 80 100
length of thread
T=4, K=4
8000
6000
g LMP, EPC, and LR
% 4000 timed outatL =5
£
2000
0 ,
0 20 40 60 80 100

length of thread

Fig. 9. Resultsfor Bluetooth Example (cont’d). The results are similar: LMP clearly loses, but
as with the results for arbitrary schedules (Figs. 6 and P{; Bins in several configurations.

log10(time)

10

I
|
S RS
%
X
X
%o O

N
T
XX

o
T
5
D
[e]
[e]

e ° o LMP
x EPC

| | | J
0 1 2 3 4 5 6 7
VC length x 10°

Fig. 10. Runtime vs. VC Length. One hypothesis is that VC length (and therefore static code
size and complexity produced by the translation) is cruciaperformance in the VC-checking
paradigm. To test this hypothesis, we collected all thelb@seuns, for both the microbenchmark
and the Bluetooth queries, and plotted runtimes versuszbe$the VC, as reported in “words”
by the Unix utility wc to normalize for different variable naming conventionsthis plot, each
translation is shown with a different symbol (and color)eHize of the symbol is proportional to
the context boun&. The data appear to cluster into multiple straight linedidating exponential
growth, but with different bases for the different traniglas and problem instances. For example,
LMP compensates somewhat for vastly bigger VCs with a |dvased exponent. There appears
to be some correlation betweé&hand the exponential growth rate, although this is imperfect
We observed even less correlation withWe conjecture that some complexity measure, such
as number of program paths, could predict which exponeatiale a given problem family and
translation approach would exhibit. (The graph is muchezdsiinterpret in color.)

References

1. D.Babit and A. J. Hu. Calysto: Scalable and precise eegrstatic checking. Iinterna-
tional Conference on Software Engineering (IC3iges 211-220, 2008.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auotatic predicate abstraction of
C programs. IrConf. on Programming Language Design and Implementati&®(f, pages
203-213, 2001.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. RLBIno. Boogie: A modular
reusable verifier for object-oriented programsFMCO, pages 364-387, 2005.

4. C.Barrettand C. Tinelli. CVC3. Imternational Conference on Computer Aided Verification
(CAV), pages 298-302, 2007.

5. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamdkiteachability predicate for ana-
lyzing low-level software. IMTACAS pages 19-33, 2007.

6. E. Clarke, D. Kroening, and F. Lerda. A tool for checking @INC programs. IIMTACAS
pages 168-176, 2004.

7. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. PratBabstraction of ANSI-C pro-
grams using SATFormal Methods in System Design (FMSR%:105-127, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded modeaking using satisfiability

solving. Formal Methods in System Desigid(1):7-34, 2001.

. E. M. Clarke and E. A. Emerson. Design and synthesis offsypmization skeletons using

branching-time temporal logic. lhogic of ProgramsLNCS 131, pages 52-71, 1981.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. 8s&eanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java sourde.ctnInternational Conference
on Software Engineering (ICSH)ages 439—448, 2000.

L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. Ifil. Conf. on Tools and
Algorithms for the Construction and Analysis of SystemE@3) pages 337-340, 2008.

R. DeLine and K. R. M. Leino. BoogiePL: A typed proceduaaiguage for checking object-
oriented programs. Technical Report MSR-TR-2005-70, b&ioft Research, 2005.

C. Demartini, R. losif, and R. Sisto. A deadlock deteactmol for concurrent Java programs.
Software — Practice and Experien@9(7):577—-603, 1999.

E. W. Dijkstra. Guarded commands, nondeterminacy anddbderivation of programs.
Communications of the ACM8:453—-457, 1975.

J. Esparza and S. Schwoon. A BDD-based model checkezdurgive programs. Imter-
national Conference on Computer Aided Verification (GAMpes 324-336, 2001.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,Bl. Saxe, and R. Stata. Extended
static checking for Java. IALDI, pages 234-245, 2002.

M. K. Ganai and A. Gupta. Efficient modeling of concurreygtems in BMC. Irintl. SPIN
Workshop on Model Checking Softwapages 114-133, 2008.

G. J. HolzmannDesign and Validation of Computer ProtocoRrentice-Hall, 1991.

G. J. Holzmann and M. H. Smith. Software model checkingormal Methods for Protocol
Engineering and Distributed Systems (FORT#)ume 156 oflFIP Conference Proceed-
ings pages 481-497. Kluwer, 1999.

V. Kahlon, S. Sankaranarayanan, and A. Gupta. Semautiction of thread interleavings
in concurrent programs. MACAS pages 124-138, 2009.

S. K. Lahiri, S. Qadeer, and Z. Rakamari€. Static andipeedetection of concurrency errors
in systems code using SMT solvers.@AV, pages 509-524, 2009.

A. Lal and T. W. Reps. Reducing concurrent analysis uadssntext bound to sequential
analysis. InConf. on Computer Aided Verification (CAypges 37-51, 2008.

A. Lal, T. Touili, N. Kidd, and T. W. Reps. Interproceduaaalysis of concurrent programs
under a context bound. RACAS pages 282—298, 2008.

M. Musuvathi and S. Qadeer. Iterative context boundongsf/stematic testing of multi-
threaded programs. RLDI, pages 446—455, 2007.

S. Qadeer and J. Rehof. Context-bounded model checkta@nourrent software. I€onf.
on Tools and Algorithms for the Construction and AnalysiSystemspages 93-107, 2005.
S. Qadeer and D. Wu. KISS: Keep it simple and sequentmlCanf. on Programming
Language Design and Implementation (PLQ&ges 14—24, 2004.

I. Rabinovitz and O. Grumberg. Bounded model checkingpaturrent programs. i@onf.
on Computer-Aided Verification (CA\fages 82—-97, 2005.

Z. Rakamari¢ and A. J. Hu. A scalable memory model for-level code. InConf. on
Verification, Model Checking and Abstract InterpretatidMCAI), pages 290-304, 2009.
W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpsearifying C compiler (extended
abstract). InC/C++ Verification Workshop (CCVYR007.

D. Suwimonteerabuth, J. Esparza, and S. Schwoon. Siooritext-bounded analysis of
multithreaded Java programs. $IN pages 270-287, 2008.

S. L. Torre, P. Madhusudan, and G. Parlato. Reducingegbhbunded concurrent reacha-
bility to sequential reachability. IGAV, pages 477-492, 2009.

W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerdad®l checking programsAuto-
mated Software Engineerinj0(2):203-232, 2003.

