
Context-Bounded Translations for Concurrent
Software: An Empirical Evaluation⋆

Naghmeh Ghafari1, Alan J. Hu2, and Zvonimir Rakamarić2

1 Critical Systems Labs, Vancouver, BC, Canada
naghmeh.ghafari@cslabs.com

2 Department of Computer Science, University of British Columbia, Canada
{ajh,zrakamar }@cs.ubc.ca

Abstract. Context-Bounded Analysis has emerged as a practical and success-
ful automatic formal analysis technique for fine-grained, shared-memory concur-
rent software. Two recent papers (in CAV 2008 and 2009) have proposed inge-
nious translation approaches that promise much better scalability, backed by com-
pelling, but differing, theoretical and conceptual advantages. Empirical evidence
comparing the different translations, however, has been lacking. Furthermore,
these papers focused exclusively on Boolean model checking, ignoring the also
widely used paradigm of verification-condition checking. In this paper, we under-
take a methodical, empirical evaluation of the three main source-to-source trans-
lations for context-bounded analysis of concurrent software, in a verification-
condition-checking paradigm. We evaluate their scalability under a wide range
of experimental conditions. Our results show: (1) The newest, CAV 2009 transla-
tion is the clear loser, with the CAV 2008 translation the best in most instances,
but the oldest, brute-force translation doing surprisingly well. Clearly, previous
results for Boolean model checking do not apply to verification-condition check-
ing. (2) Disturbingly, confounding factors in the experimental design can change
the relative performance of the translations, highlighting the importance of ex-
tensive and thorough experiments. For example, using a different (slower) SMT
solver changes the relative ranking of the translations, potentially misleading re-
searchers and practitioners to use an inferior translation. (3) SMT runtimes grow
exponentially with verification-condition length, but different translations and pa-
rameters give different exponential curves. This suggeststhat the practical scal-
ability of a translation scheme might be estimated by combining the size of the
queries with an empirical or theoretical measure of the complexity of solving that
class of query. Taken altogether, our results highlight thecrucial importance of
extensive experimental evaluation, provide practical guidance for using context-
bounded analysis for research or application, and outline pitfalls and questions
for further research as these and other translations are developed and improved.

1 Introduction

The original application for model checking was concurrentsoftware, in the form of
protocols (e.g., [9, 18]), and concurrent software continues to be a major impetus for

⋆ This work was supported by a Microsoft Research Graduate Fellowship and the Natural Sci-
ence and Engineering Research Council of Canada.

model checking. With changes in technology, new versions ofthe software model
checking problem emerge. Currently, due to architectural and electrical constraints,
Moore’s Law is manifesting itself via an exponential growthin processor cores per chip,
rather than the formerly exponential improvements in single-threaded performance. The
result is a push for vastly greater levels of fine-grained, shared-memory concurrent soft-
ware — in addition to classical message-passing and coarse-grained protocol-level con-
currency — even in the most mundane applications. Such software needs verification.

It is possible, of course, to model check such software directly, and several pioneer-
ing systems provide that capability (e.g., [13, 19, 10, 32]). The state space is the cross
product of all program variables, stacks, heaps, and program counters for all threads,
and this state space can be explored as a transition system. The obvious challenge is ex-
treme state explosion (if variable domains, stacks, and memories are modeled as finite)
and/or theoretical undecidability (if any are modeled as infinite).

Context-Bounded Analysis (CBA) [26] promises a way around these challenges.
Analogously to bounded model checking [8], the user specifies an integer constant that
bounds the maximum number of execution contexts (i.e., periods of a thread running
between context swaps) to be considered, and all concurrentexecutions up to that bound
are analyzed. The downside, of course, is that if a bug requires more than that bound to
manifest, it will be missed. The upside is that CBA reduces the analysis of concurrent
software (under the context bound) to the analysis of sequential software. In theory,
the advantage is that CBA is NP-complete [25, 23], whereas full concurrent software
analysis is undecidable (even with finite variable domains and no heap, due to the call
stack). In practice, CBA has proven its ability to detect hard concurrency bugs in real
software, and many approaches rely on context-bounding to tackle the complexity of
concurrent software (e.g., [26, 27, 24, 17, 30, 21, 20]).

The original CBA paper [26] used a source-to-source translation of concurrent to se-
quential program text, and subsequent work has followed that approach. The approach
enables CBA to exploit all of the tools and algorithms for verification of sequential
software, e.g., including the use of logics and decision procedures for reasoning about
unbounded data domains, arrays, and heap-allocated memory. Recent papers by Lal and
Reps [22] and by La Torre, Madhusudan, and Parlato [31] have proposed two ingenious
and radically different source-to-source translations for CBA. These translations are
more general than the original, but more importantly, they offer compelling theoretical
and conceptual arguments for much better scalability. In Lal and Reps’s paper (hence-
forth referred to as LR in this paper), the key theoretical advance is the elimination of
the exponential cross-product of the local states of the threads, at the expense of intro-
ducing multiple non-deterministic symbolic variables to guess the values of the shared
global variables at context switches. La Torre, Madhusudan, and Parlato’s paper (LMP
in this paper) retains the theoretical advantage of LR, but adds “laziness” — instead of
non-deterministic guesses, variables can assume only those values that are actually pos-
sible during a real concurrent execution — at the expense of needing to recompute the
values of local variables at context switches. (More on bothtranslations in Section 2.)
Both papers support their arguments with runtimes on a handful of small Boolean pro-
grams, e.g., the popular “Windows NT Bluetooth driver”-derived example [26].

Given the very different approaches, with differing trade-offs (local state cross-
product vs. symbolic variables vs. recomputation), and limited experiments (small Bool-
ean programs model-checked with Moped [15]), it is hard to draw more general con-
clusions about what will work well in practice, under differing conditions. In particular,
finite-state (or PDA) model-checking of highly abstracted Boolean programs (e.g., [2,
15, 7]) is only one of the major approaches for automatic formal software verification.
Another main paradigm is verification-condition (VC) generation3, with the resulting
VC checked by a SAT or SMT solver (e.g., [16, 3, 5, 6, 29, 1, 28]). SAT/SMT solvers be-
have very differently from the BDDs used in Boolean model checking, so experimental
results in the VC-checking paradigm are especially needed.

This paper addresses those needs. We undertake a methodical, empirical evaluation
of the three main source-to-source translations for context-bounded analysis of con-
current software, in a VC-checking paradigm. We consider the LMP approach, the LR
approach, and a straightforward generalization of the translation given in the original
CBA paper [26]. We evaluate how they perform under vastly more experimental con-
ditions than previous work, and also measure scalability versus program length, which
was not done before. Some of the results are surprising (e.g., older methods outperform-
ing newer ones), and some are disturbing (e.g., the extent that confounding factors can
influence results). Taken altogether, our results highlight the crucial importance of ex-
tensive experimental evaluation, provide practical guidance for using context-bounded
analysis in a VC-checking paradigm for research or application, and outline pitfalls
and questions for further research as these and other translations are developed and
improved.

2 Context-Bounded Translations

We use a standard model of shared-memory concur- Thread
1

Thread
2

Thread
3rent software. There areT threads, each with its own lo-

cal variables and program code. The only communication
between threads is via a set of global shared variables,
which all threads can read or write. (Writes to a global oc-
cur atomically: when a thread writes to a global, the new
value is immediately visible to all threads.) At all times, ex-
actly one thread is running. At a context switch, the current
thread relinquishes control to another thread (determined
by the scheduling policy), which proceeds to execute start-
ing from wherever it last gave up control, with whatever
values its local variables had at that time and the current values of the global variables.
Context switches occur non-deterministically at any pointin time. The figure to the
right shows the concurrent execution of three threads. The program code executed by
each thread is depicted by the sequence of dark, vertical arrows. Each of those arrows
represents one “context” — an uninterrupted period when onethread runs its code.
The dashed arrows represent context switches, which occur non-deterministically, and
transfer control to a different thread.
3 A VC is a logical formula whose validity implies partial correctness of the code for which it

was generated. VCs are typically constructed via weakest precondition or symbolic execution.

When a context switch occurs, which thread runs next is determined by a scheduling
policy. Two policies are common in CBA: round-robin and arbitrary. In round-robin
scheduling, the context switch is always to the numericallynext thread, moduloT.
Hence, execution proceeds in a series of rounds, during which each thread gets a chance
to execute once at its turn. In the preceding figure, the schedule is round-robin, and the
light (cyan) solid curved lines demarcate the three rounds.In arbitrary scheduling, a
context switch can jump to any thread, non-deterministically chosen. Obviously, the
schedules permitted by round-robin withK rounds is a subset of the arbitrary schedules
with K ·T contexts. Conversely, the schedules permitted by round-robin with K rounds
is a superset of the arbitrary schedules withK contexts, since a thread can execute
zero instructions before another context switch occurs, soeach round of round-robin
can simulate one context of an arbitrary-scheduled thread.Between these two bounds,
neither policy dominates the other.

We now survey the three main source-to-source translationsfor CBA under this
model. For space reasons, we give only some brief intuition for each.

2.1 Explicit Program Counter (EPC)

We dub our first translation “Explicit Program Counter” (EPC). This is the obvious,
brute-force approach and is a straightforward generalization of the original CBA pa-
per [26] (where they restricted themselves to two context switches in order to permit an
efficient implementation via the procedure call mechanism).

For the EPC translation, the state of the sequential programincludes all of the local
variables, including the program counters, of all of the threads. The code of the sequen-
tial program consists of the code of all of the threads combined into a single program.
However, at each possible location for a context switch (i.e., between every adjacent
pair of accesses to global variables), we insert code that can non-deterministically de-
cide to simulate a context switch. The context switch code consists of choosing the next
thread to run (based on the scheduling policy), and then jumping to the correct location
in that thread based on its stored program counter. The sequential program starts ex-
ecuting at the beginning ofThread1 for round-robin or with a non-deterministic jump
to the beginning of an arbitrary thread for arbitrary scheduling. An auxiliary variablek
counts how many contexts have run. The sequential program terminates whenk reaches
the context boundK, or when all threads have executed all of their code.

This translation is simple and has linear static and dynamiccode size versus the con-
current program. However, at each point during execution, the program state consists of
the cross-product of all local variables and the global variables, potentially producing a
complexity blow-up.

2.2 Lal-Reps CAV 2008 (LR)

The LR translation eliminates the EPC complexity blow-up, at the expense of introduc-
ing symbolic prophesy variables to guess the values of results that are not yet known.
The basic construction is to execute each thread one-by-onein its entirety, in sequence,
i.e., all ofThread1, then all ofThread2, then all ofThread3, etc. Accordingly, the static
and dynamic code size are unchanged from the original program. Furthermore, since

each thread executes in its entirety, without interruptionfrom the others, there is no
need to keep the local state of a thread after it is done, thereby eliminating the blow-up
of the local state cross-product.

The construction in the preceding paragraph would produce wrong results, since
it ignores the fact that in the concurrent program, a contextswitch could occur at any
point and change the value of global variables. Worse, because we are executing the
threads sequentially one after another, the results computed by the other threads might
not be known until much later in the sequential execution!

The solution is to createK copies of the global variables, whereK is the bound
on the number of round-robin rounds. Theith copy contains the values of the global
variables during theith scheduling round. Since we will not know what values these
variables will contain until the program completes, we initialize allK copies with non-
deterministic symbolic values. An auxiliary variablek in each thread keeps track of
which round is executing; all accesses to globals are indexed throughk. A context
switch during the execution of a thread, therefore, consists simply of increasingk,
which results in a switch to the correct set of global variables for that round. Hence,
at each possible location for a context switch, we insert code that non-deterministically
increasesk. At the end of the program, we useassume statements to enforce that the
results in the copy of the globals at the end of roundi are equal to the non-deterministic
symbolic values we used to initialize the copy of the globalsfor the start of roundi +1.
In effect, the translation is computing symbolic summariesfor each round and stitching
them together viaassume statements at the end.

Note that this construction is intrinsically round-robin.Because the threads are ex-
ecuted in order 1, . . . ,T, whereT is the number of threads, the values of the globals
in each round pass automatically from anyThreadt to Threadt+1. The symbolic values
and stitching are required only between rounds.

2.3 La Torre-Madhusudan-Parlato CAV 2009 (LMP)

Because LR is constructing symbolic summaries from unconstrained symbolic values,
it might explore expensive, infeasible regions of the statespace, only to eliminate them
in the end using theassume statements. LMP avoids this problem by introducing “lazi-
ness” — instead of non-deterministic guesses, variables can assume only those values
that are actually possible during a real concurrent execution. (For comparison purposes,
the LMP paper also introduces an eager translation similar to the LR translation. In this
paper, LMP refers to their lazy translation.)

LMP with a bound ofK contexts starts with a non-deterministic schedulet1, . . . ,tK ,
whereti ∈ [1, . . . ,T] contains the identity of the thread to execute during theith context.
As in LR, there areK copies of the global variables, but these are assigned only as their
values are computed. Like EPC, execution in the LMP translation follows the same or-
der as the concurrent execution — a context switch is an actual jump to the next thread
in the schedule. Unlike EPC, however, the local state of a thread is completely discarded
when context-switching away from it, thereby eliminating the local-state cross-product
blow-up. How can a thread resume where it left off after a context switch? The solu-
tion is to recompute the thread’s local state! In other words, the context-switch code is
considerably more complicated, as it will re-execute a thread from the beginning each

time a context switch to it occurs, but during re-execution,the values of the global vari-
ables at earlier context switches are already known. In the presence of non-determinism,
correctness of this construction is not obvious, since the recomputed local state might
be different from the one that occurred when last executing in this thread — a subtle
correctness argument is needed to show that no additional behaviors are introduced.
The resulting translation has the best attributes of both LR(no local-state blow-up) and
EPC (no exploration of infeasible states), but at a cost: a blow-up in the length of the
dynamic code paths that must be executed/analyzed. The LMP paper provides some
experimental results showing the translation greatly outperforming their version of LR,
but only in the Boolean model checking paradigm, and on only two small examples: an
artificial example specifically constructed to illustrate the benefit of laziness,4 and the
aforementioned “Bluetooth driver” benchmark. How the methods compare as program
size grows, and under the VC-checking paradigm, are open questions.

3 Experimental Methodology and Results

Obviously, the ultimate test of these translations is theirperformance in the wild on real
software. In our experience applying CBA to real, industrial code [21], a crucial factor
was scalability to larger code sizes, so the paramount dimension for our experiments
is scalability with respect to code length. For scalabilitybenchmarking, however, real
code has a fatal flaw: the code length is not scalable.

Accordingly, we crafted a microbenchmark that is scalable along the three key prob-
lem parameters: the number of threadsT, the context boundK, and the length of the
program code in each threadL. To avoid confounding factors, we distilled our bench-
mark to only the essentials:

int x = 0;

L







x++;
...

x++;
assert 0 < x;

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

∣
∣
∣
∣
∣
∣
∣
∣
∣

x++;
...

x++;
assert 0 < x;

︸ ︷︷ ︸

T

The benchmark has a shared global variablex, which is initialized to 0. Then,T threads
are spawned. Each thread consists ofL increments ofx followed by an assertion that
checks ifx is greater than 0. Despite its simplicity, this microbenchmark still has the key
elements of the concurrent software model: local state (theprogram counters), shared
global statex, and long data-dependency chains that grow with code size and must
be inspected in order to prove the assertions, capturing an essential aspect of program
scaling. The microbenchmark does not have procedures or loops — in the VC-checking

4 In their “permutation” example, an interlock serializes two threads, the first thread zeroes out
16 bits, and the second thread computes all permutations of the 16 bits. With laziness, the bits
are all zero, so the permutation is vacuous; without laziness, the second thread explodes.

paradigm, these are handled via invariants. Note that this particular microbenchmark
could easily be solved via other means, since it has a small finite state space. That is
not the point. This is a “test tube” experiment, to identify and eliminate confounding
factors while measuring scalability. If a translation scales poorly on this benchmark, it
will not fare well on real code.

For each of the three translations, we encoded in BoogiePL [12] multiple instances
of this benchmark by varying itsT, K, andL parameters. BoogiePL is the input language
of the BOOGIE verifier [3], which generates a verification-condition (VC)from the
input program. The VC generation in BOOGIE is performed using a variation of the
standardweakest preconditiontransformer [14]. This translation is linear in the input
code size; combined with the linear static code-size expansion of the three translations,
all three translations produce linear-size VCs, albeit with differing complexity (LMP the
most complex; LR the simplest). We checked the VCs generatedfrom our benchmarks
using the Z3 SMT solver [11], except where indicated otherwise. The experiments were
performed on four identical machines (Intel Xeon 5160 at 3GHz with 2GB RAM),
running Z3 continuously for weeks. We report the solver’s running times, and the time
out is set to 2 hours.

As an additional sanity check, we also performed experiments on the Bluetooth
driver example [26]. The original benchmark has two threads: an “adder” and a “stop-
per”. We artificially scaleT by adding adder threads. We artificially scale code length
by repeating (i.e. copy-pasting) the body of the adder threads; the parameterL denotes
the number of such repetitions.

Figs. 1–10 present our main results. Details and interpretation of each experiment
are in the accompanying captions. Full experimental data and complete results graphs
are available athttp://people.cs.ubc.ca/˜naghmehg/spin2010-results .

4 Conclusions

The primary, practical take-away conclusion of this paper is that LMP is not compet-
itive in the VC-checking paradigm. This radical reversal ofrecently published results
highlights the difference of Boolean model checking versusVC-checking. Both are im-
portant, and our experiments show that they need different translations.

Our experiments suggest that LR is likely the best translation for the VC-checking
paradigm, under most experimental conditions, and with current state-of-the-art SMT
solvers. LR is also particularly easy to implement, making it our recommendation for
VC-checking-based research prototypes for CBA. Surprisingly, the superiority of LR
to LMP holds even with arbitrary schedules, when LR is at an artificial disadvantage.
Given that LR withK round-robinroundsoutperforms LR withK arbitrary contexts,
there is no efficiency argument for using arbitrary schedules.

Another surprise was how well the brute-force EPC translation did, beating LMP
in almost all experiments and LR in a few. In the VC-checking paradigm, the power
of SMT and SAT solvers to quickly prune irrelevant parts of the search space and to
propagate information in any direction perhaps lessens thebenefit of translation insights
like laziness or state space reductions, benefits that mightmake a big difference for

0 20 40 60 80 100
0

50

100

150

200

250
T=1, K=1

length of thread

tim
e(

se
c)

LMP
EPC
LR

0 20 40 60 80 100
0

50

100

150

200

250
T=2, K=1

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

50

100

150

200

250
T=1, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=1, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=1, K=4

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=4

length of thread

tim
e(

se
c)

LR timeout

EPC timeout

EPC timeout

EPC timeout

LMP timeout

LMP timeout
EPC
timeout LR timeout

LMP timed out
at L = 5

Fig. 1. Baseline Comparison. This and Fig. 2 show a representative sample of our baseline com-
parison (round-robin scheduling, Z3 as SMT solver), with the number of threadsT ∈ [1, . . . ,4]
(going across the pages), the context boundK ∈ [1, . . . ,4] (going down the page), and the length
of each thread’s program codeL going from 5,10, . . . up to 100. (Caption continues on next page.)

0 20 40 60 80 100
0

50

100

150

200

250
T=3, K=1

length of thread

tim
e(

se
c)

LMP
EPC
LR

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=1

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=4

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=4

length of thread

tim
e(

se
c)

LR timeout

EPC timeout

LR timeout

LMP timeout

LMP timeout

EPC
timeout

EPC timeout

EPC timeout

LR timeout

EPC timeout

LMP timeout

LR timeout

LR timeout

LMP timed out
at L = 5

LR timeout

LMP timed out
at L = 5

LMP and EPC
timed out
at L = 5

Fig. 2. Baseline Comparison (cont’d). Surprisingly, LR beats LMP, contradicting the results
in [31], and furthermore, even EPC beats LMP. The different experimental conditions in [31]
likely explain much of this reversal: (1) While EPC and LMP donot suffer particularly under
round-robin scheduling, LR has an intrinsic advantage. (2)In the VC-checking paradigm, the
benefit of laziness is unclear, since the solver can propagate information in any direction. (3) On
the other hand, LMP’s longer dynamic code paths generate more complex VCs.

Default Relevancy=2 Results

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=2

length of thread

tim
e(

se
c)

 LMP
EP
LR

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=3

length of thread

tim
e(

se
c)LR timeout

LR timeout

LR timeoutLR timeout

EPC
timeout

EPC
timeout

LMP
timeout

EPC
timeout

LMP timed out
at L = 5

LMP timed out
at L = 5

LMP and EPC
timed out
at L = 5

Relevancy=1 Results

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=3

length of thread

tim
e(

se
c)

EPC timeout

LMP timeout

LMP timeout

LR
timeout

LR timeout

EPC
timeout

EPC timeout

LR timeout

LMP timed out
at L = 5

LMP timed out
at L = 5

EPC
timeout

Fig. 3. Sensitivity to Z3 Parameter Tuning. For the baseline results, we had performed informal
tuning of Z3 parameters. The only setting that we changed from the defaults was “relevancy
propagation heuristic” that affects quantifier instantiation and assertion of atoms in the solver.
We set it to 0 for best performance. Given the surprising results, though, it was imperative to
run with different relevancy settings, to ensure we had not inadvertently biased our experiments.
For space reasons, we show only four graphs, forT,K ∈ [2,3], the smallest non-degenerate (T or
K = 1) cases. The results are qualitatively the same: LR wins; LMP loses.

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=3

length of thread

tim
e(

se
c)

LR timeout
EPC
timeout

LMP
EPC
LR

EPC timeout

LR timeout

LMP timed out
at L = 10

LMP timed out
at L = 10

EPC timeout
LMP
timeout

LMP timeout

EPC
timeout

Fig. 4. Sensitivity to Random Perturbation. SMT solvers, like SAT solvers, are notoriously
temperamental. To assess the robustness of our results, we repeated all of the baseline experiments
three additional times, with different random number seeds. These graphs show the range of
performance across different seeds. Although times vary considerably, there is almost no overlap
between the translations. We can conclude that the baselineresults are robust.

a Boolean model checker. However, SMT/SAT solver performance is quirky, highly
dependent on heuristics, and hard to predict.

Fortunately, our experiments suggest an avenue for predicting performance. SMT
runtimes tend to grow exponentially with VC length, but the different translations and
parameters give different exponential curves. This suggests that the practical scalability
of a translation scheme might be predicted by combining the size of the queries gener-
ated with an empirical or theoretical measure of the complexity of solving that class of
query. As a crude heuristic, pick translations that keep VCsshort and simple.

Disturbingly, our experiments also highlight experimental pitfalls and confounding
factors. For example, using an older, slower SMT solver changes the relative ranking of
the translations, implying that practical performance depends more on the interaction of
a translation with a given SMT solver than on theoretical properties of the translation in
isolation. If another revolution in SMT solving occurred, these translations would need
to be re-evaluated. Similarly, the relative ranking of translations was sometimes differ-
ent in small, degenerate corners of the parameter space. Performing only a few exper-
iments, as if often done in this research area, could easily give misleading results. Our
results can be used as a cautionary map, clarifying the landscape (e.g., VC-checking vs
Boolean model checking) and highlighting pitfalls (e.g., use the fastest solver, conduct
thorough experiments). These are not happy results, but they are critically important,
since they challenge the assumptions and methodologies underpinning further research.

0 20 40 60 80 100
0

2000

4000

6000

8000
T=1, K=1

length of thread

tim
e(

se
c)

LMP
EPC
LR

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=1

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=1, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=2

length of thread

tim
e(

se
c)

LMP timeout

LMP timeout

LMP timeout

LMP timed out
at L = 1

LR timeout

LR timeout

EPC timeout

Fig. 5. Sensitivity to SMT Solver. A key question is whether our results are specific to Z3. We
undertook to re-run our experiments with all publicly available SMT solvers that can handle the
needed logic. Because BOOGIEgenerates VCs with quantifiers, from the 2009 SMT Competition,
the only other suitable solver is CVC3 [4]. Performance was much worse, so we have results only
for the smallest values ofT andK. Disturbingly, the performance order changes: EPC is the clear
winner in these experiments. The choice of SMT solver determines which translation performs
best! Experimental evaluation, therefore, should always include multiple solvers, or at least the
fastest one available. Using a slower solver can produce misleading results.

Finally, it is thought-provoking to consider how poorly allthree translations scale on
our microbenchmark. As noted earlier, the microbenchmark is easily solvable by other
means, e.g., even the largest parameter configuration we considered (T = 4, K = 4,
L = 100) yields a state space of roughly only 1.6 billion states (100 program counter
locations for each of 4 threads times a 4-valued context counter times a 4-valued pointer
that indicates the active thread), within the reach of even explicit-state model checking.
Yet, none of the translations, under any experimental setup, came anywhere close to
those parameter values. There is an odd disparity between the ample empirical proof of
the practical success of CBA (including our own work, findingreal bugs in real indus-
trial software, using the same LR-BOOGIE-Z3 tool chain, albeit augmented with some
abstraction techniques [21]) and its poor scalability here. The explanation, we believe,
is that the power of CBA with VC-checking comes from the ability to reason about and
soundly abstract software features like large memories, heaps, and recursion, but not
from the core exploration of interleavings, which is where classical model checking ex-
cels. We speculate there may be promising hybrids between the two approaches, or that
CBA will dominate bug-finding in low-level software implementations with explicit-
state model checking dominating protocol-level software verification, much as bounded
model checking and explicit-state model checking complement each other in hardware
verification.

0 20 40 60 80 100
0

2

4

6

8
T=1, K=1

length of thread

tim
e(

se
c)

LMP
EPC
LR

0 20 40 60 80 100
0

2

4

6

8
T=2, K=1

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

200

400

600

800

1000
T=1, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

200

400

600

800

1000
T=2, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=1, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=1, K=4

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=4

length of thread

tim
e(

se
c)

LR timeout

LR timeout

EPC
timeout

LMP timeout

LMP
timeout

EPC timeout

LMP timeout

LR timeout

Fig. 6. Results with Arbitrary Scheduling Policy. As noted earlier, our baseline results are with
round-robin scheduling, and with all translations analyzing the same number of contexts, to be
fair. This and Fig. 7 show the results using an arbitrary scheduling policy withK total contexts,
also with all translations analyzing the same number of contexts. Now, there is no clear winner.
LMP clearly does best in the degenerateT = 1 cases. EPC wins in several of the mid-sized
configurations. And LR is the last to timeout asT andK grow larger. (Caption continues on next
page.)

0 20 40 60 80 100
0

2

4

6

8
T=3, K=1

length of thread

tim
e(

se
c)

LMP
EPC
LR

0 20 40 60 80 100
0

2

4

6

8
T=4, K=1

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=4

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=4

length of thread

tim
e(

se
c)

LMP
timeout

LMP timeout

LMP timeout
LMP timeout

EPC
timeout

LMP timeout
EPC timeout

EPC timeout
LR timeout

LMP timeout

LR timeout

EPC timeout

LR timeout
LR timeout

EPC timed out
at L = 5

Fig. 7. Results with Arbitrary Scheduling Policy (cont’d). It would be easy to draw incor-
rect conclusions about algorithmic superiority if only small parts of the experimental space are
explored, as is often the case. Interestingly, LR withK arbitrary contexts performs worse than
LR with K round-robinrounds! The explanation is that LR is intrinsically round-robin, so the
arbitrary-scheduleK-context translation is essentially doing a round-robinK-round translation,
plus extra work to ensure that only one context executes in each round. We present here results
for arbitrary-schedule LR only for fairness; it is pointless in practice.

0 20 40 60 80 100
0

50

100

150

200

250
T=2, K=1

length of thread

tim
e(

se
c)

LMP
EPC
LR

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=1

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=2, K=4

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=3, K=4

length of thread

tim
e(

se
c)

LMP timeout

LR timeout

LR timeout

LMP timeout

EPC timeout

EPC timeout

LMP timeout

LR timeout

LMP timed out
at L = 5

LMP timed out
at L = 5

LR timeout

EPC timeout

EPC timeout

LR timeout

LMP timeout

LMP
timeout

EPC timeout

Fig. 8. Results for Bluetooth Example. As a check of our results, we also evaluated the three
translations on the popular “Bluetooth driver” example. The original example had two threads:
an “adder” and a “stopper”. To scale the number of threads, wecreated additional adder threads.
T indicates the total number of threads. (T starts at 2 in these graphs because we need at least
1 adder and 1 stopper.) To artificially scale program length,we duplicated the body of the adder
threads.L indicates the number of copies of the original code in each thread. The runs are under
the baseline conditions: round-robin scheduling with Z3 asthe SMT solver. (Caption continues
on next page.)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=1

length of thread

tim
e(

se
c)

LMP
EPC
LR

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=2

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=3

length of thread

tim
e(

se
c)

0 20 40 60 80 100
0

2000

4000

6000

8000
T=4, K=4

length of thread

tim
e(

se
c)

LMP timeout

LMP timeout

EPC timeout

LR timeout

LR timeout
EPC timeout

LMP timed out
at L = 5

LMP, EPC, and LR
timed out at L = 5

Fig. 9. Results for Bluetooth Example (cont’d). The results are similar: LMP clearly loses, but
as with the results for arbitrary schedules (Figs. 6 and 7), EPC wins in several configurations.

0 1 2 3 4 5 6 7

x 10
5

−4

−2

0

2

4

6

8

10

VC length

lo
g1

0(
tim

e)

LMP
EPC
LR

Fig. 10. Runtime vs. VC Length. One hypothesis is that VC length (and therefore static code
size and complexity produced by the translation) is crucialfor performance in the VC-checking
paradigm. To test this hypothesis, we collected all the baseline runs, for both the microbenchmark
and the Bluetooth queries, and plotted runtimes versus the size of the VC, as reported in “words”
by the Unix utility wc to normalize for different variable naming conventions. Inthis plot, each
translation is shown with a different symbol (and color). The size of the symbol is proportional to
the context boundK. The data appear to cluster into multiple straight lines, indicating exponential
growth, but with different bases for the different translations and problem instances. For example,
LMP compensates somewhat for vastly bigger VCs with a lower-based exponent. There appears
to be some correlation betweenK and the exponential growth rate, although this is imperfect.
We observed even less correlation withT. We conjecture that some complexity measure, such
as number of program paths, could predict which exponentialcurve a given problem family and
translation approach would exhibit. (The graph is much easier to interpret in color.)

References

1. D. Babić and A. J. Hu. Calysto: Scalable and precise extended static checking. InInterna-
tional Conference on Software Engineering (ICSE), pages 211–220, 2008.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of
C programs. InConf. on Programming Language Design and Implementation (PLDI), pages
203–213, 2001.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. InFMCO, pages 364–387, 2005.

4. C. Barrett and C. Tinelli. CVC3. InInternational Conference on Computer Aided Verification
(CAV), pages 298–302, 2007.

5. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić.A reachability predicate for ana-
lyzing low-level software. InTACAS, pages 19–33, 2007.

6. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. InTACAS,
pages 168–176, 2004.

7. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI–C pro-
grams using SAT.Formal Methods in System Design (FMSD), 25:105–127, 2004.

8. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7–34, 2001.

9. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. InLogic of Programs, LNCS 131, pages 52–71, 1981.

10. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. InInternational Conference
on Software Engineering (ICSE), pages 439–448, 2000.

11. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. InIntl. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 337–340, 2008.

12. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedurallanguage for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

13. C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent Java programs.
Software — Practice and Experience, 29(7):577–603, 1999.

14. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18:453–457, 1975.

15. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs. InInter-
national Conference on Computer Aided Verification (CAV), pages 324–336, 2001.

16. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended
static checking for Java. InPLDI, pages 234–245, 2002.

17. M. K. Ganai and A. Gupta. Efficient modeling of concurrentsystems in BMC. InIntl. SPIN
Workshop on Model Checking Software, pages 114–133, 2008.

18. G. J. Holzmann.Design and Validation of Computer Protocols. Prentice-Hall, 1991.
19. G. J. Holzmann and M. H. Smith. Software model checking. In Formal Methods for Protocol

Engineering and Distributed Systems (FORTE), volume 156 ofIFIP Conference Proceed-
ings, pages 481–497. Kluwer, 1999.

20. V. Kahlon, S. Sankaranarayanan, and A. Gupta. Semantic reduction of thread interleavings
in concurrent programs. InTACAS, pages 124–138, 2009.

21. S. K. Lahiri, S. Qadeer, and Z. Rakamarić. Static and precise detection of concurrency errors
in systems code using SMT solvers. InCAV, pages 509–524, 2009.

22. A. Lal and T. W. Reps. Reducing concurrent analysis undera context bound to sequential
analysis. InConf. on Computer Aided Verification (CAV), pages 37–51, 2008.

23. A. Lal, T. Touili, N. Kidd, and T. W. Reps. Interprocedural analysis of concurrent programs
under a context bound. InTACAS, pages 282–298, 2008.

24. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of multi-
threaded programs. InPLDI, pages 446–455, 2007.

25. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. InConf.
on Tools and Algorithms for the Construction and Analysis ofSystems, pages 93–107, 2005.

26. S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In Conf. on Programming
Language Design and Implementation (PLDI), pages 14–24, 2004.

27. I. Rabinovitz and O. Grumberg. Bounded model checking ofconcurrent programs. InConf.
on Computer-Aided Verification (CAV), pages 82–97, 2005.

28. Z. Rakamarić and A. J. Hu. A scalable memory model for low-level code. InConf. on
Verification, Model Checking and Abstract Interpretation (VMCAI), pages 290–304, 2009.

29. W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpse ofa verifying C compiler (extended
abstract). InC/C++ Verification Workshop (CCV), 2007.

30. D. Suwimonteerabuth, J. Esparza, and S. Schwoon. Symbolic context-bounded analysis of
multithreaded Java programs. InSPIN, pages 270–287, 2008.

31. S. L. Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concurrent reacha-
bility to sequential reachability. InCAV, pages 477–492, 2009.

32. W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking programs.Auto-
mated Software Engineering, 10(2):203–232, 2003.

