
Time-Bounded Reachability in Distributed
Input/Output Interactive Probabilistic Chains

Georgel Calin1, Pepijn Crouzen1, Pedro R. D’Argenio2, E. Moritz Hahn1, and
Lijun Zhang3

1 Department of Computer Science, Saarland University, Saarbrücken, Germany
2 FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
3 DTU Informatics, Technical University of Denmark, Denmark

Abstract. We develop an algorithm to compute timed reachability prob-
abilities for distributed models which are both probabilistic and nonde-
terministic. To obtain realistic results we consider the recently intro-
duced class of (strongly) distributed schedulers, for which no analysis
techniques are known.
Our algorithm is based on reformulating the nondeterministic models as
parametric ones, by interpreting scheduler decisions as parameters. We
then apply the PARAM tool to extract the reachability probability as a
polynomial function, which we optimize using nonlinear programming.

Key words: Distributed Systems, Probabilistic Models, Nondetermin-
ism, Time-Bounded Reachability

1 Introduction

This paper considers the computation of reachability probabilities for compo-
sitional models with probabilistic and nondeterministic behavior. Such models
arise, for instance, in the field of distributed algorithms, where probabilistic be-
havior is often used to break symmetries in the system. Nondeterminism may
appear through the uncertain order of events occurring in different processes or
to model freedom of design or unspecified behavior within a process.

Traditional analysis techniques for probabilistic models with nondeterminism
compute the maximal and minimal probability to reach a set of configurations
by considering all possible resolutions of the nondeterminism [2]. Recently it
has been shown that this approach may lead to unrealistic results for models
of distributed systems or algorithms [10]. The problem is that the traditional
approach allows processes to use non-local information to influence its decisions.

As a running example we will use a simple coin-flip experiment. One player
repeatedly flips a coin, while a second player (nondeterministically) guesses the
outcome (See Fig. 1). We are interested in the probability that the second player
manages to guess correctly at least once within t rounds. Intuitively this prob-

ability is 1 −
(

1
2

)t
, but it has been shown that standard analysis methods will

produce a probability of 1 for any t > 0 [10]. The issue is that, from a global
point of view, the optimal resolution of the nondeterministic guess simply uses
the outcome of the coin-flip as a guide and this way always guesses correctly.

2 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

Distributed schedulers restrict the resolution of nondeterminism by enforcing
that local decisions of the processes are based only on local knowledge. For
our example, this means that the guesser is not allowed to base the guess on
the outcome of the coin-flip. We will see that this leads to realistic results for
the probability of attaining a correct guess. Strongly distributed schedulers, in
addition, ensure that the relative probability of choosing between two different
components does not change with time, provided these components remain idle
and uninformed of the progress of the rest of the system.

When considering distributed (or strongly distributed) schedulers, bounds
for reachability probabilities are both undecidable and unapproximable in gen-
eral [9]. However time-bounded reachability probabilities, i.e., the probability to
reach a set of configurations within a specified time-period, can be computed.
For distributed schedulers, this is due to the fact that optimal solutions in this
setting can be computed by only taking into account the subset of deterministic
distributed schedulers, which is finite if the system under consideration is finite
and acyclic. Nonetheless, the theoretical complexity of this problem is exponen-
tial in the number of states. The case of strongly distributed schedulers turns to
be more difficult. In this setting, optimal solutions may lie on pure probabilistic
schedulers [10]. Therefore, exploring all possible solutions is not an option.

In this paper, we propose to reduce the problem of computing time-bounded
reachability probabilities for distributed, probabilistic, and nondeterministic mod-
els, under distributed (or strongly distributed) schedulers to a nonlinear opti-
mization problem. We use as our modeling vehicle the formalism of Input/Output
Interactive Probabilistic Chains (see Section 2). The computation of time-bounded
reachability probabilities is achieved by reformulating the models as Parametric
Markov Chains (see Section 5), where the parameters are the decisions of the
schedulers and the distributed model is unrolled up to the specified time-point
(see Section 6). The time-bounded reachability probability can now be expressed
as a polynomial function and we can then compute bounds for it by optimizing
the polynomial function under certain constraints.

While for distributed schedulers the only restriction on the variables of the
polynomials is that appropriately grouped they form a distribution (i.e. all vari-
ables take values between 0 and 1 and each group of variables sum up to 1),
the case of strongly distributed schedulers require some additional and more
complex restrictions, the optimal value of the property being calculated through
more involved nonlinear programming techniques.

2 Input/Output Interactive Probabilistic Chains

Interactive probabilistic chains (IPCs) are state-based models that combine
discrete-time Markov Chains and labelled transition systems [6]. IPCs can be
used to compositionally model probabilistic systemss. An important feature of
the IPC formalism is that probabilistic transitions and action-labeled transi-
tions are handled orthogonally. As our modeling vehicle we use Input/Output
Interactive Probabilistic Chains (I/O-IPCs), a restricted variant of IPCs with a
strict separation between local and non-local behavior. The restriction of IPCs
to I/O-IPCs follows the one of Interactive Markov Chains to I/O-IMCs in the

Time-Bounded Reachability in Distributed I/O-IPCs 3

continuous-time setting [3]. The separation between local and non-local behavior
is achieved by partitioning the I/O-IPC actions in input, output, and internal
actions. In this section we briefly introduce the necessary I/O-IPC definitions.

Let Dist(X) be the set of all probability distributions over the finite set X .

Definition 1. A basic I/O-IPC is a quintuple 〈S, A,→,⇒, ŝ〉:

– S is a finite set of states with ŝ ∈ S the initial state;
– A = AI ∪ AO ∪ Aint is a finite set of actions, consisting of disjoint sets of

input actions (AI), output actions (AO), and internal actions (Aint);
– → ⊆ S × A × S is the set of interactive transitions;
– ⇒ : S ⇀ Dist(S) is a PF representing the set of probabilistic transitions;
– ŝ ∈ S is the initial state of the I/O-IPC.

Input actions are suffixed by “ ?”, output actions by “ !” and we require that an
I/O-IPC is both input-enabled, i.e. for each state s and each input action a there
is at least one state s′ such that (s, a, s′) ∈→. We also require that the I/O-IPC
is action-deterministic, that is, for each state s and each action a there is at
most one state s′ such that (s, a, s′) ∈→. The non-determinism then stems from
the choice between different actions. Finally we require that every state has at
least one outgoing, internal, output, or probabilistic transition.

We say that an I/O-IPC is closed if it has no input actions, i.e., AI = ∅.
Note that the requirement of action-determinism is introduced only to simplify
the theoretical framework around schedulers. Non-deterministic choices between
input transitions can be handled in a similar way as nondeterministic choices
between output or internal transitions [10].

Given an action a, we use the shorthand notation s
a→P s′ for an interactive

transition (s, a, s′) ∈→P of P . Given a distribution µ over the states of P we use
the shorthand notation s ⇒P µ for (s, µ) ∈⇒P . We often leave out the subscript
when it is clear from the context.

1

2

1

2

th! tt!

1

gh!

gt!

Fig. 1: Basic I/O-IPC Models of the Repeated Coin-Flip Experiment.

The repeated coin-flip (e.g.) is described by the two basic I/O-IPCs in Fig. 1.
The coin-flip is depicted on the left-hand side and the coin-toss on the right-hand
side. Initial states are indicated by incoming arrows; interactive transitions are
labelled with their actions and probabilistic transitions s ⇒ µ are depicted by
arrows from s to the support of µ, where each such arrow is labelled with the
associated probability.

4 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

2.1 Parallel composition

Distributed I/O-IPCs are obtained through parallelizing (“‖”) simpler I/O-IPCs.

Definition 2. Two I/O-IPCs P and Q are composable if AO
P ∩ AO

Q = AP ∩
Aint

Q = Aint
P ∩ AQ = ∅. If P and Q are composable then C := P‖Q will be

〈SP × SQ, AI
C ∪ AO

C ∪ Aint
C ,→C ,⇒C , (ŝP , ŝQ)〉,

where AO
C := AO

P ∪ AO
Q, AI

C :=
(

AI
P ∪ AI

Q

)

\ AO
C , Aint

C = Aint
P ∪ Aint

Q and the
transition relations are

→C = {(s, t) a→C (s′, t)| s
a→P s′, a ∈ AP \ AQ}

∪ {(s, t) a→C (s, t′)| t
a→Q t′, a ∈ AQ \ AP}

∪ {(s, t) a→C (s′, t′)| s
a→P s′, t

a→Q t′, a ∈ AP ∩ AQ}
⇒C = {(s, t) ⇒C (µs × µt)| s ⇒P µs ∧ t ⇒Q µt}

with µs × µt denoting the product distribution on SP × SQ.
Parallel composition can be extended to any finite set C of I/O-IPCs in the

usual way. Let #C denote the number of components of C.

The result of synchronizing an input action with an output action through I/O-
IPC parallelization will be an output action in the resulting model. As an ex-
ample, the composition of the basic I/O-IPCs of Fig. 1 is depicted in Fig. 2.

×h

√
h

√
t

×t

1

2

1

2

gt!

gh!

th!

th!

th!

gt!

gh! gh!

gt!

tt!

tt!

tt!

gh!

gt!
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Fig. 2: Distributed I/O-IPC Model of the Repeated Coin-Flip Experiment.

2.2 Vanishing and tangible states

The use of distinct probabilistic and instantaneous transitions separates the
concerns of time and interaction. In essence, it allows us to specify interactions
between components which are instantaneous and do not have to be modeled
with explicit time steps. We say that internal and output transitions are immedi-
ate and that probabilistic transitions are timed. We now assume that immediate
transitions always take precedence over timed transitions. This assumption is
known as the maximal progress assumption [14]. This separation between imme-
diate and timed transitions is also reflected in the system states.

Time-Bounded Reachability in Distributed I/O-IPCs 5

Definition 3 (Vanishing/Tangible States). A state is called vanishing if
at least one outgoing immediate transition is enabled in it. If only probabilistic
actions are enabled in a state then it is called tangible.

The gray-colored nodes in Figures 1 and 2 are vanishing states, while the
rest are all tangible states. For simplicity, in our current study we consider
only models that do not exhibit Zeno behaviour (i.e. loops consisting of only
immediate actions are not reachable/present in the distributed model).

2.3 Paths

An I/O-IPC path describes one possible run of the I/O-IPC. In such a run, we
start in a particular state, follow a transition to another state, and so forth.

Definition 4. Given an I/O-IPC P = 〈S, A,→,⇒, ŝ〉, a finite path of P of
length n ∈ N is a sequence s0a0s1a1 . . . an−1sn where states (si ∈ S for i ∈ [0, n])
and either actions or distributions (ai ∈ A ∪ Dist(S), for i ∈ [0, n − 1]) are
interleaved. For consecutive states si and si+1 we find that either ai ∈ A and
(si, ai, si+1) ∈→ or ai ∈ Dist(S), si is tangible, (si, ai) ∈⇒, and ai(si+1) > 0.
An infinite path of P is an infinite sequence s0a0s1a1 . . . interleaving states and
actions/distributions. We denote the last state of a finite path σ as last(σ).

For studying time-bounded reachability, we need a notion of time. We follow
the definition of time in IPCs and say that only probabilistic transitions take
time, while interactive transitions are considered to take place immediately [5].

Definition 5. The elapsed time along a finite path σ, notation t(σ), is defined
recursively, for states s, actions a and distributions µ over states: t(s) = 0,
t(σas) = t(σ), and t(σµs) = t(σ) + 1.

2.4 Schedulers

We now wish to associate paths of an I/O-IPC with probabilities. The usual
strategy is to define the probability of a path as the multiplication of the prob-
abilities of its transitions. To define such a probability for paths in an I/O-IPC
we need some way of resolving the non-deterministic choice between interac-
tive transitions in vanishing states of an I/O-IPC. For all states s ∈ S, let

Aen
s,P = {a ∈ AO|∃s′.s

a→ s′} ∪ {a ∈ Aint|∃s′.s
a→ s′} be the set of enabled

immediate actions for s.

Definition 6. A scheduler for an I/O-IPC P is the function ηP : Paths(P) →
Dist(AP), such that positive probability are assigned only to actions enabled in
the last state of a path: ηP(σ)(a) > 0 implies that a ∈ Aen

last(σ),P .

If P is closed, then a scheduler determines the probability to observe a certain
path, which also allows us to define time-bounded reachability probabilities. We
give the details, in the context of distributed schedulers, in Section 4.

6 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

3 Distributed Schedulers

As we have seen, the probability of reaching a set of goal states in a distributed
I/O-IPC depends on how the nondeterminism of chosing an action is handled.
By assigning probabilities to the available actions, a scheduler can be seen as
a refinement of the I/O-IPC such that the induced model becomes determin-
istic. It can thus be said that a scheduler enables us to determine reachability
probabilities in a deterministic fashion.

However, the class of all schedulers for the model of a distributed system
contains schedulers that are unrealistic in that they allow components of the sys-
tem to use non-local information to guide their local decisions. To overcome this
problem, distributed schedulers have been introduced, that restrict the possible
choices of a scheduler to make them more realistic in a distributed setting [10].
Distributed schedulers have originally been introduced for (switched) probabilis-
tic input/output automata [2] and we adapt them here for our Input/Output
Interactive Markov Chains formalism.

To illustrate the necessity of distributed schedulers, consider the game de-
scribed in Fig. 2 where an unbiased coin is repeatedly tossed and guessed by
two independent entities at the same time. We are interested in the prob-
ability to reach the set of states labelled

√
within a specified number t of

timed(probabilistic) steps. This is exactly the probability that the guessing
player guesses correctly within at most t tries. Intuitively, for each matching
toss/guess, since the tossing player makes its choice probabilistically and the
guessing player does not observe the outcome, the guessing player should have
a probability of one half of making the right guess and winning the game.

However, it is clear that in the composed model there is a scheduler that
arrives with probability one at a

√
state within at most one timed step. This

scheduler simply chooses the action th if heads is tossed and tt if tails is tossed,
thereby always winning. The purpose of distributed schedulers is to make sure
that the decision between th and tt is made only based on local information.

3.1 Distributed Schedulers

The main principle of distributed schedulers is to use a separate scheduler for
each of the components of the system such that each has access only to their
own scheduling history. To be able to reason about local information we first
introduce path projections.

Given any distributed I/O-IPC C = P1‖. . . ‖Pn and a path σ ∈ Paths(C),
the projection σ[Pi] of σ on C’s i-th basic component is given by:

– (ŝC)[Pi] = πi(ŝC)

– (σas)[Pi] =

{

σ[Pi] if a /∈ APi

(σ[Pi])a(πi(s)) if a ∈ APi

– (σ(µ1 × · · · × µn)s)[Pi] = (σ[Pi])µi(πi(s)).

where πi ((s1, . . . , sn)) = si for all (s1, . . . , sn) ∈ SC .
A local scheduler for P is simply any scheduler for P as given by Def. 6. A

local scheduler resolves the nondeterminism arising from choices between enabled

Time-Bounded Reachability in Distributed I/O-IPCs 7

output and internal actions in one of the components. However, nondeterminism
may also arise from the interleaving of the different components. In other words,
if for some state in a distributed I/O-IPC, two or more components have enabled
immediate actions, then it must be decided which component acts first. This
decision is made by the interleaving scheduler.

Definition 7. Given a distributed I/O-IPC C = P1‖. . . ‖Pn, an interleaving
scheduler I : Paths(C) → Dist({P1, . . . ,Pn}) is defined for paths σ such that
last(σ) is vanishing. The interleaving scheduler I chooses probabilistically an
enabled component of the distributed system, i.e., we have that I(σ)(Pi) > 0
implies Aen

last(σ[Pi]),Pi
6= ∅.

Local schedulers and an interleaving scheduler form a distributed scheduler.

Definition 8. Given a distributed I/O-IPC C = P1‖. . . ‖Pn, local schedulers
ηP1

, . . . , ηP1
, and interleaving scheduler I, the associated distributed scheduler

is the function ηC : Paths(C) → Dist (AC) such that, for all σ ∈ Paths(C) with
last(σ) vanishing and for all a ∈ AC:

ηC(σ)(a) =

n
∑

i=1

I(σ)(Pi) · ηPi
(σ[Pi])(a)

We denote the set of all distributed schedulers as DS .

3.2 Strongly Distributed Schedulers

Although the class of distributed schedulers already realistically restricts the
local decisions of processes in a distributed setting, in certain cases there ex-
ist distributed schedulers, where the interleaving schedulers are to powerful. In
essence, the problem is that a distributed scheduler may use information from
a component P1 to decide how to pick between components P2 and P3. In cer-
tain settings this is unrealistic. To counter this problem strongly distributed
schedulers have been introduced [10].

Given any two components Pi, Pj of a distributed I/O-IPC C = P1‖ . . . ‖Pn,
consider the following property: for all σ, σ′ such that σ[Pi] = σ′[Pi] and σ[Pj] =
σ′[Pj], if I(σ)(Pi) + I(σ)(Pj) 6= 0 and I(σ′)(Pi) + I(σ′)(Pj) 6= 0 then

I(σ)(Pi)

I(σ)(Pi) + I(σ)(Pj)
=

I(σ′)(Pi)

I(σ′)(Pi) + I(σ′)(Pj)
. (1)

Definition 9. A scheduler η is strongly distributed if it is distributed and the
restriction in Eq. (1) holds for the interleaving scheduler I of η.

The intuition behind strongly distributed scheduler is that the choices the in-
terleaving scheduler makes between two components Pi, Pj should be consistent
with respect to the local paths of Pi, Pj . If for two global paths, the local paths
of Pi, Pj are identical, then the probability of choosing Pi under the condition
that we choose either Pi or Pj should be identical for both global paths.

8 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

Strongly distributed schedulers are useful depending on which system is con-
sidered for study [10]. When analyzing an auctioning protocol, for example,
where each component models one of the bidders, then the order in which the
bidders interact with the auctioneer should not leak information that can be used
to the advantage of the other bidders. In such a situation, strongly distributed
schedulers would provide more adequate worst-case/best-case probabilities.

However, if the interleaving scheduler should have access to the history of the
components (as it might be the case for a kernel scheduler on a computer) then
distributed schedulers should be considered, as the strongly distributed version
might rule out valid possibilities.

We denote the set of all distributed schedulers as SDS .

4 Induced Probability Measure

When all the non-deterministic choices in a distributed I/O-IPC are resolved
by a scheduler, we end up with a probability measure on sets of paths of the
I/O-IPC. We define this probability measure in a similar way as is done for
IPCs [15]. We fix a closed distributed I/O-IPC C = P1‖ . . . ‖Pn with state space
SC , actions AC , and initial state ŝ.

The cylinder induced by the finite path σ is the set of infinite paths σ↑ =
{σ′ | σ′ is infinite and σ is a prefix of σ′}. Let the set of cylinders generate the
σ-algebra on infinite paths of C.

Definition 10. Let η be a (possibly strongly) distributed scheduler on C. The
probability measure induced by η on the set of infinite paths is the unique prob-
ability measure Pη such that, for any state s in SC, any action a in AC and any
distribution µ ∈ Dist(SC):

Pη(s↑) =

{

1 if s = ŝ
0 otherwise

Pη(σas↑) =

{

Pη(σ↑) · η(σ)(a) if last(σ) is vanishing and last(σ)
a−→ s

0 otherwise

Pη(σµs↑) =

{

Pη(σ↑) · µ(s) if last(σ) is tangible and last(σ) ⇒ µ
0 otherwise

We are now ready to define time-bounded reachability for I/O-IPCs.

Definition 11. Given an I/O-IPC P with an initial distribution, a set of goal
states G and a time-bound t ∈ N, we have that the probability to reach G within
t time-steps, denoted Pη(♦≤tG), is:

Pη(♦≤tG) = Pη(
⋃{σ↑ | t(σ) ≤ t and last(σ) ∈ G})

5 Parametric Markov Models

To compute time-bounded reachability probabilities we will transform distributed
I/O-IPCs into Parametric Markov models (see Section 6). In this section we give
a brief overview of parametric Markov Chains [7, 12, 11]. First, we introduce some
general notations.

Time-Bounded Reachability in Distributed I/O-IPCs 9

Let S be a finite set of states. We let V = {x1, . . . , xn} denote a set of
variables with domain R. An assignment ζ is a function ζ : V → R. A polynomial
g over V is a sum of monomials g(x1, . . . , xn) =

∑

i1,...,in
ai1,...,in

xi1
1 · · ·xin

n where
each ij ∈ N0 and each ai1,...,in

∈ R. A rational function f over a set of variables
V is a fraction f(x1, . . . , xn) = f1(x1, . . . , xn)/f2(x1, . . . , xn) of two polynomials
f1, f2 over V .

Let FV denote the set of rational functions from V to R. Given f ∈ FV and an
assignment ζ, we let ζ(f) denote the rational function obtained by substituting
each occurrence of x ∈ V with ζ(x).

Definition 12. A parametric Markov chain (PMC) is a tuple D = (S, ŝ,P, V)
where S is a finite set of states, ŝ is the initial state, V = {v1, . . . , vn} is a finite
set of parameters and P is the probability matrix P : S × S → FV .

The matrix P denotes the probabilities to go from one state to another in
one step. We now generalize this for k steps.

Definition 13. Given a PMC D = (S, ŝ,P, V), the k-step probability matrix
Pk, k ∈ N, is defined recursively for any k′ > 1 and states s, s′ ∈ S:

P0(s, s
′) =

{

1 if s = s′

0 if s 6= s′

Pk′ (s, s′) =
∑

s′′∈S

Pk′−1(s, s
′′) · P(s′′, s′)

6 Parametric Interpretation

By having the scheduler η fixed, Pη together with the scheduled I/O IPC C
would become deterministic. The big difference to, e.g., DTMC models is that in
our case the model is not memoryless (the scheduler depends on entire paths).
However, by treating the interleaving and local scheduler decisions as unknowns
we arrive at analyzing parametric Markov Chains, the parameters being precisely
the decisions that the interleaving and local schedulers perform.

We have seen in Section 4 that fixing the scheduler of a distributed I/O-IPC
induces a probability measure on paths. Our approach is now to fix the scheduler
parametrically, i.e., by treating the probabilities chosen by the interleaving and
local schedulers as parameters. We will show that this unfolding of the I/O-IPC
induces a PMC (see Section 5) whose states are paths of the distributed I/O-
IPC. To make sure the induced PMC is finite we generate it only for paths up
to a specific time-bound t. We then prove that computing the probability to
reach a set of states within t time-units for the induced PMC is equivalent to
computing it for the I/O-IPC.

To give an idea of how this unfolding works, consider again the repeated
coin-flip experiment, depicted in Fig. 1 and 2. Intuitively it should hold that
Pr(♦≤2{√h,

√
t}) = 3/4 if we assume the guessing player has no information

about the outcome of each coin-flip. Fig. 3 describes the unfolding of the dis-
tributed I/O-IPC from Figure 2 up to time-point 2. On the right-hand side we

10 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

see the structure of the PMC for one time-step. The unfolding up to 2 time
steps is shown schematically on the left-hand side, where each square represents
a copy of the structure on the right-hand side.

Pk :

√
h

×h

√
t

×t

1

2

1

2

ifk jf

k

xh
kigk xt

kjg
k

xt
kigk xh

kjg
k

1

1

1

1

xh
k

xt
k

xt
k

xh
k

P0P1

P4

P3

P2

Fig. 3: Repeated Coin-Flip Experiment (PMC-unfolding Scheme up to Time 2)

The local scheduler decisions in this case for each repeating structure Pk are
xh

k , xt
k s.t. xh

k + xt
k = 1 and the interleaving scheduler decisions are igk, ifk , jg

k , jf
k

s.t. igk + ifk = jg
k + jf

k = 1. Here xh
k , for example, denotes the probability assigned

by the local scheduler for the guesser to pick “heads” for a local path ending in a
“heads” vs. “tail” choice. The parameters igk and ifk denote the probabilities the
interleaving scheduler assigns to the “guessing” model and the “flipping model”
respectively, for a given global path which enables them both.

Now, Pr(♦≤2{√h,
√

t}) can be computed as the sum of the cumulated prob-
abilities on the paths leading to {√h.

√
t} states by using the given unfolding in

Fig. 3 and the above parameter restrictions:

1

2

(

xh
0 · ig0 + if0 · xh

0 + (xt
0 · ig0 + if0 · xt

0) ·
[1

2
(xh

1 · ig1 + if1 · xh
1) +

1

2
(xt

1 · ig1 + xt
1 · if1)

]

)

+

1

2

(

xt
0 · ig0 + if0 · xt

0 + (xh
0 · ig0 + if0 · xh

0) ·
[1

2
(xh

2 · ig2 + if2 · xh
2) +

1

2
(xt

2 · ig2 + if2 · xt
2)
]

)

=

1

2
(xh

0 + xt
0 · (

1

2
xh

1 +
1

2
xt

1)) +
1

2
(xt

0 + xh
0 · (1

2
xh

2 +
1

2
xt

2)) =
3

4

We now define the above interpretation of scheduler decisions as parameters
formally.

Definition 14. Let St
C ⊆ Paths(C) be the set of all paths in a closed, distributed

I/O-IPC C = P1‖. . . ‖Pn, with time-length ≤ t. Define the parameters set V by

V = { yi
σ | σ ∈ St

C , 1 ≤ i ≤ #C, Aen
last(σ[Pi]),Pi

6= ∅} ∪
{ xa

σ[Pi]
| σ ∈ St

C , 1 ≤ i ≤ #C, a ∈ Aen
last(σ[Pi]),Pi

}

and let P match the induced probability measure, namely for any path σ ∈ St
C,

any state s of C, any action a of C and any distribution µ over the states of C:

P(σ, σas) = yi
σ · xa

σ[Pi]
if last(σ) is vanishing, last(σ)

a→ s, a ∈ Aen
last(σ[Pi]),Pi

P(σ, σµs) = µ(s) if last(σ) is tangible, t(σ) < t, last(σ) ⇒ µ

P(σ, σ) = 1 if last(σ) is tangible, t(σ) = t.

Time-Bounded Reachability in Distributed I/O-IPCs 11

All other transition probabilities are zero. The unfolding of the I/O-IPC C up to
time bound t is then the PMC D = (St

C , ŝC ,P, V).

The finiteness of St
C and V is guaranteed by the exclusion of infinite chains

consisting of only immediate actions, as it implies that for each state in C a
tangible state is reachable within a finite number of non-probabilistic steps. The
variables in Def. 14 can be restricted to ensure that they represent valid scheduler
decisions in the following way:

0 ≤ v ≤ 1 if v ∈ V
∑

a∈A xa
σ[Pi]

= 1 if σ ∈ St
C and 1 ≤ i ≤ #C with A = Aen

last(σ[Pi]),Pi
(2)

∑

i∈I yi
σ = 1 if σ ∈ St

C with I = {i | 1 ≤ i ≤ #C, last(σ[Pi]) vanishing}

Under these restrictions we can connect path probabilities of I/O-IPCs to
k-step transition probabilities of the induced PMC.

Lemma 1. For a closed, distributed I/O-IPC C, let D be as in Def. 14. Then

(i) For all distributed scheduler η there is an assignment ζ : V → [0, 1] satisfying
2 such that for all σ ∈ St

C : Pη(σ↑) = ζ(Pk(ŝ, σ)) where k is the length of σ.
(ii) Reciprocally, for all assignment ζ : V → [0, 1] satisfying (2) there is a dis-

tributed scheduler η such that for all σ ∈ St
C : Pη(σ↑) = ζ(Pk(ŝ, σ)).

The proof of Lemma 1 can be found in Appendix A.
We can now reformulate the bounded reachability problem for I/O-IPCs

under distributed schedulers as an unbounded reachability problem for the as-
sociated induced PMC.

Theorem 1. Time-bounded reachability for an I/O-IPC C under distributed
schedulers is equivalent to checking time-unbounded reachability on the PMC
D = (St

C , ŝC ,P, V) as in Def. 14 for assignments that satisfy (2):

sup
η∈DS

Pη(♦≤tG) = sup
ζ sat. (2)

ζ(PD(♦G)) and inf
η∈DS

Pη(♦≤tG) = inf
ζ sat. (2)

ζ(PD(♦G)).

The proof of Theorem 1 can be found in Appendix A.
To extend this result to strongly distributed schedulers we must further re-

strict the variables of the induced PMC such that the allwoed assignments match
the strongly distributed schedulers. First we introduce new variables which rep-
resent the conditional probabilities in (1). For every i, j, 1 ≤ i, j ≤ #C, i 6= j,
and σ ∈ St

C , define a new variable zi,j

σ[Pi],σ[Pj]
/∈ V . Notice that two different

σ, σ′ ∈ St
C may induce the same variable if σ[Pi] = σ′[Pi] and σ[Pj] = σ′[Pj].

We write Vz for the set of all such variables zi,j

σ[Pi],σ[Pj]
.

Using these new variables we pose new restrictions on the variables in the
induced PMC of a distributed I/O-IPC.

zi,j

σ[Pi],σ[Pj]
(yi

σ + yj
σ) = yi

σ if 1 ≤ i, j ≤ #C, i 6= j, and σ ∈ St
C (3)

12 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

Theorem 2. Time-bounded reachability for an I/O-IPC C under strongly dis-
tributed schedulers is equivalent to checking reachability on the parametric Markov
model D = (St

C , ŝC ,P, V ∪Vz) resulted through unfolding as in Def. 14 under the
assumptions (2) and (3).

The proof of Theorem 2 can be found in Appendix A.
Time-unbounded reachability probabilities for PMCs can be computed using

the tool PARAM, which, since our PMC models are acyclic, results in analyzing a
set of polynomial functions over the given variables. These polynomial functions
can then be optimized under the constraints given by (2) and – for strongly
distributed schedulers – (3) using standard numerical solvers. Together, these
steps form our algorithm.

7 Algorithm

We now present our algorithm to compute extremal time-bounded reachabil-
ity probabilities for distributed I/O-IPCs. Our algorithm requires the following
inputs: a closed, distributed I/O-IPC which exhibits no Zeno-behavior C, a time-
bound t, and a set of goal states G. The following steps are sequentially executed:

1. The I/O-IPC is unfolded up to time-bound t, yielding a PMC (as per Def. 14).
Additionally linear constraints on the parameters are provided to ensure that
all scheduler decisions lie in the interval [0, 1] and that specific sets of param-
eters sum up to 1. In the case of strongly distributed schedulers, non-linear
constraints are also generated as described in Thm. 2.

2. The time-unbounded reachability probability for the set of goal states G is
calculated parametrically for the PMC generated in step 1 using the PARAM

tool [11]. The result is a polynomial function.
3. The polynomial function generated in step 2 is optimized under the con-

straints generated in step 3 using non-linear programming. We have used
the active-set algorithm [8, 13] provided by the fmincon function of Mat-
lab4, but any non-linear programming tool can in principal be used.

An overview of this tool-chain is presented in Fig. 4. The tool which unfolds the
I/O-IPC and generates a PMC together with linear and non-linear constraints
is still under development. We have, however generated PMC models and con-
straints semi-automatically for several case studies which we present next.

8 Case Studies

In this section we apply our algorithm to three case studies. Since the Unfolder
tool, which translates distributed I/O-IPCs into PMCs and constraints, is still
under development we have generated PMCs and constraints for these cases in
a semi-automatic way. The PARAM tool has been run on a computer with a 3
Ghz processor and 1 GB of memory, while Matlab was run on a computer with
two 1.2 Ghz processors and 2 GB of memory. All I/O-IPC and PMC models are
available from the authors.

4 See http://www.mathworks.com

Time-Bounded Reachability in Distributed I/O-IPCs 13

G

I/O-IPC

t

Unfolder

PARAM

PMC

Constraints

Polynomial

Matlab Result

Fig. 4: The Envisioned Tool-Chain: ellipses represent tools, boxes represent data, where
dashed ellipses represent tools that are currently in development.

8.1 Mastermind

In the game of Mastermind [1] one player, the guesser, tries to find out a code,
generated by the other player, the encoder. The code consisting of a number of
tokens of fixed positions, where for each token one color (or other labelling) out
of a pre-specified set is chosen. Colors can appear multiple times.

Each round, the guesser guesses a code. This code is then compared to the
correct one by the encoder. The encoder answers by telling the guesser a) how
many tokens were of the correct color and at the correct place and b) how many
tokens were not at the correct place, but have a corresponding token of the same
color in the code.

Notice that the decisions of the encoder during the game are fully determin-
istic, while the guesser has the choice between all valid codes. We assume that
the encode chooses the code probabilistically with a uniform distribution over
all options. The goal of the guesser is to find out the code as fast as possible.
Our aim is now to compute the maximal probability that the guesser correctly
guesses the code within t rounds.

We formalize the game as follows: we let n denote the number of tokens of the
code and let m denote the number of colors. This means there are mn possible
codes. Let O denote the set of all possible codes. We now informally describe
the I/O-IPC models which represent the game of Mastermind. The guesses are
described by actions {go | o ∈ O}, whereas the answers are described by actions
{a(x,y) | x, y ∈ [0, n]}.

The guesser G repeats the following steps: From the initial state, sG it first
takes a probabilistic step to state s′G and afterwards the guesser returns to the
initial state via one of mn transitions, each labelled with an output action go!.
In both states the guesser receives answers a(x,y)? from the encoder and for all
answers the guesser simply remains in the same state, except for the answer
a(n,n) which signals that the guesser has guessed correctly. When the guesser
receives this action it moves to the absorbing state s′′G .

The encoder E is somewhat more complex. It start by picking a code prob-
abilistically, where each code has the same probability 1

mn . Afterwards the en-
coder repeats the following steps indefinitely. First it receives a guess from the

14 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

guesser, then it replies with the appropriate answer and then it takes a prob-
abilistic transition. This probabilistic step synchronizes with the probabilistic
step of the guesser, which allows us to record the number of rounds the guesser
needs to find the code.

The Mastermind game is thus the composition C := G‖E of the two basic
I/O IPCs. Using the tool described in Section 7 we can now reason about the
maximal probability Pr(♦≤ts′′G) to break the code within a pre-specified number
t of guesses. We consider here the set of all distributed schedulers as we obviously
want that the guesser uses only local information to make its guesses. If we were
to consider the set of all schedulers the maximum probability would be 1 for
any time-bound as the guesser would immediately choose the correct code with
probability 1. Note that it does not make sense to consider strongly distributed
schedulers for this case study as it never occurs that the I/O-IPCs G and E both
have immediate actions enabled. In other words, the players act in turn.

Settings PMC PARAM NLP

n m t #S #T #V Time(s) Mem(MB) #V Time(s) Pr

2 2 2 197 248 36 0.0492 1.43 17 0.0973 0.750
2 2 3 629 788 148 0.130 2.68 73 0.653 1.00
3 2 2 1545 2000 248 0.276 5.29 93 1.51 0.625
3 2 3 10953 14152 2536 39.8 235 879 1433 1.00
2 3 2 2197 2853 279 0.509 6.14 100 2.15 0.556

Table 1: Results of Mastermind Case Study

Results are given in Table 1. In addition to the model parameters (n, m),
the time bound (t) and the result (Pr). We provide statistics for the various
phases of the algorithm. For the unfolded PMC we gives the number of states
(#S), transitions (#T), and variables (#V). For the PARAM tool we give the
time needed to compute the polynomial, the memory required, and the number
of variables that remain in the resulting polynomial. Finally we give the time
needed for Matlab to optimize the polynomial provided by PARAM under the
linear constraints that all scheduler decisions lie between 0 and 1. For this case
study we generated PMC models and linear constraints semi-automically given
the parameters n, m, and t.

8.2 Dining cryptographers

The dining cryptographers problem is a classical anonymity problem [4]. The
cryptographers must work together to deduce a particular piece of information
using their local knowledge, but at the same time each cryptographers’ local
knowledge may not be discovered by the others. The problem is as follows:
three cryptograpers have just finished dining in a restaurant when their waiter
arrives to tell them their bill has been paid anonymously. The cryptographers
now decide they wish to respect the anonimity of the payer, but they wonder
if one of the cryptographers has paid or someone else. They resolve to use the
following protocol to discover whether one of the cryptographers paid, without
revealing which one.

Time-Bounded Reachability in Distributed I/O-IPCs 15

We depict part of the I/O-IPC models in Fig. 5. On the right-hand side we
have the I/O-IPC F that simply decides who paid (actions pi) and then starts
the protocol. Each cryptographer has a probability of 1

6 to have paid and there is
a probability of 1

2 that none of them has paid. On the left-hand side of Fig. 5 we
see part of the I/O-IPC P∞ for the first cryptographer. Each cryptographer flips
a fair coin such that the others cannot see the outcome. In Fig. 5 we only show
the case where cryptographer one flips heads. Each cryptographer now shows
his coin to himself and his right-hand neighbour (actions hi for heads and ti for
tails). This happens in a fixed order. Each cryptographer now knows the outcome
of two coins (for instance, cryptographer one knows the outcome of his own coin-
flip and the outcome of that of cryptographer two). Now, again in a fixed order,
they proclaim whether or not the two coins were the same or different (actions si

for same and di for different). However, if a cryptographer has paid he or she will
lie when proclaiming whether the two coins were identical or not. In Fig. 5 we
show the case where cryptographer one has not paid, so he proclaims the truth.
Now we have that if there is an even number of “different” proclamations, then
all of the cryptographers told the truth and it is revealed that someone else paid.
If, on the other hand, there is an odd number of “different” proclamations, one
of the cryptographers must have paid the bill, but it has been shown that there
is be no way for the other two cryptographers to know which one has paid. In our
model the cryptographer first attempts to guess whether or not a cryptographer
has paid (actions ci to guess that a cryptographer has paid, action ni if not). In
case the cryptographer decides a cryptographer has paid, he guesses which one
(action gi,j denotes that cryptographer i guesses cryptographer j has paid.

N1

G11 G12 G13

start?

1

2

1

2

h1!

h2? t2?

s1! d1!

sj? dj?

c1! n1!

g1,1!
g1,2!

g1,3!

1

1

1

1
NP1 P2 P3

1

6 1

6

1

6

1

2

p1! p2! p3!

start !

start ! start ! start !

11 1 1

p1?

Fig. 5: Part of the I/O-IPC model G1 (left) of the first dining cryptographer and the
I/O-IPC F (right) that probabilistically decides who has actually paid.

We can see that a “run” of the distributed I/O-IPC C = F‖G1‖G2‖G3 takes
two time-units, since there is one probabilistic step to determine who paid and
one probabilistic step where all coins are tossed simultaneously. We are interested
in two properties of this algorithm: first, all cryptographers should be able to

16 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

determine whether someone else has paid or not. We can express this property,
for example for the first cryptographer, as a reachability probability property:

P (♦≤2{P1, P2, P3}×{G11, G12, G13}×S2×S3∪{N}×{N1}×S2×S3) = 1. (4)

Here S2 and S3 denote the complete state spaces of the second and third cryp-
tographer I/O-IPCs. For the other cryptographers we find similar reachability
probability properties. Secondly, we must check that the payer remains anony-
mous. This means that, in the case that a cryptographer pays, the other two
cryptographers cannot guess this fact. We can formulate this as a conditional
reachability probability:

P (♦≤2{P2} × {G12} × S2 × S3 ∪ {P3} × {G13} × S2 × S3)

P (♦≤2{P2, P3} × S1 × S2 × S3)
=

1

2
. (5)

I.e., the probability that the first cryptographer guesses correctly which other
cryptographer has paid, under the condition that one of the other cryptographers
has paid is one half.

PMC PARAM NLP

Property #S #T #V Time(s) Mem(MB) #V Time(s) Pr

(4) 294 411 97 9.05 4.11 24 0.269 1.00
(5), top 382 571 97 9.03 4.73 16 0.171 0.167

(5), bottom 200 294 97 8.98 4.14 0 N/A 1/3

Table 2: Results of Dining Cryptographers Case Study.

Table 2 shows the results for the dining cryptographers case study. We com-
pute the conditional probability in (5) by computing the top and bottom of the
fraction separately. We can see that both properties (4) and (5) are fulfilled. Ta-
ble 2 also lists statistics on the tool performances and model sizes as described
for Table 1. Note especially that the third reachability probability was computed
by directly by PARAM. I.e., this probability is independent of the scheduler de-
cisions and PARAM was able to eliminate all variables.

8.3 Randomized Scheduler Example

For the class of strongly distributed schedulers it may be the case that the max-
imal or minimal reachability probability can not be attained by a deterministic
scheduler, i.e., a scheduler that always chooses one action/component with prob-
ability one. As our final case study we use a small example of such an I/O-IPC
as depicted by Fig. 4 in [10]. In this example the maximal reachability proba-
bility for deterministic strongly distributed schedulers is 1

2 , while there exists a
randomized strongly distributed scheduler with reachability probability 13

24 .
Table 3 shows the result of applying our tool chain to this example. We

see that we can find a scheduler with maximal reachability probability 0.545,
which is even greater than 13

24 . Note that we can express the maximal reacha-
bility probability as a time-bounded property because the example is acyclic.
However, for this case, the result from Matlab depends on the initial assignment

Time-Bounded Reachability in Distributed I/O-IPCs 17

given to the solver. For certain initial assignments the solver returns a maximal
probability of only 0.500. This indicates that further investigation is required in
the appropriate nonlinear programming tool for our algorithm.

PMC PARAM NLP

#S #T #V Time(s) Mem(MB) #V Time(s) Pr

13 23 12 0.00396 1.39 11 0.241 0.5455

Table 3: Results of Randomized Scheduler Case Study.

9 Conclusion

In this paper we have presented an algorithm to compute maximal and minimal
time-bounded reachability probabilities for I/O-IPCs under distributed sched-
ulers or strongly distributed schedulers. The core principle of our algorithm is
to reformulate the problem as a polynomial optimization problem under linear
and, in the case of strongly distributed schedulers, non-linear constraints.

The main drawback of our approach is that the PMC induced in our algo-
rithm grows exponentially with the size of our original model and the specified
time-bound, as the state space of the PMC consists of all paths of the original
model, up to a time-bound. However, no other algorithm exists that can compute
properties of distributed models under (strongly) distributed schedulers.

In several areas improvements can be made. First, it can be investigated
if special purpose algorithms can be used for the specific type of non-linear
programming problems we encounter in our context. Secondly, the memory-usage
may be optimized by using the fact that in our setting we see only polynomial
function and do not make use of rational polynomial functions.

References

1. L. H. Ault. Das Mastermind-Handbuch. Ravensburger Buchverlag, 1982.
2. A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic

systems. In Proceedings of the 15th Conference on Foundations of Software Tech-

nology and Theoretical Computer Science, pages 499–513. Springer-Verlag, 1995.
3. H. Boudali, P. Crouzen, and M. Stoelinga. A Compositional Semantics for Dynamic

Fault Trees in Terms of Interactive Markov Chains. In ATVA, pages 441–456, 2007.
4. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient

untraceability. Journal of Cryptology, 1(1):65–75, 1988.
5. N. Coste, H. Garavel, H. Hermanns, R. Hersemeule, Y. Thonnart, and M. Zidouni.

Quantitative Evaluation in Embedded System Design: Validation of Multiprocessor
Multithreaded Architectures. In DATE, pages 88–89, 2008.

6. N. Coste, H. Hermanns, E. Lantreibecq, and W. Serwe. Towards Performance
Prediction of Compositional Models in Industrial GALS Designs. In Computer

Aided Verification, pages 204–218, 2009.
7. C. Daws. Symbolic and Parametric Model Checking of Discrete-Time Markov

Chains. In ICTAC, pages 280–294, 2004.
8. P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press,

London, 1981.

5 For certain settings, Matlab reports a maximal probability of 0.500

18 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

9. S. Giro and P. R. D’Argenio. Quantitative model checking revisited: Neither decid-
able nor approximable. In J.-F. Raskin and P. S. Thiagarajan, editors, FORMATS,
volume 4763 of Lecture Notes in Computer Science, pages 179–194. Springer, 2007.

10. S. Giro and P. R. D’Argenio. On the expressive power of schedulers in dis-
tributed probabilistic systems. Electronic Notes in Theoretical Computer Science,
253(3):45–71, 2009.

11. E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A Model Checker
for Parametric Markov Models. In CAV, 2010.

12. E. M. Hahn, H. Hermanns, and L. Zhang. Probabilistic Reachability for Parametric
Markov Models. STTT, 2010.

13. S. Han. A globally convergent method for nonlinear programming. Journal of

Optimization Theory and Applications, 22, 1977.
14. H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, vol-

ume 2428 of Lecture Notes in Computer Science. Springer-Verlag, 2002.
15. L. Zhang and M. R. Neuhäußer. Model checking interactive markov chains. In

TACAS, pages 53–68, 2010.

Time-Bounded Reachability in Distributed I/O-IPCs 19

A Proofs

A.1 Proof of Lemma 1

Proof. For (i) and (ii) set the assignment ζ, respectively the distributed sched-
uler η such that for 1 ≤ i ≤ #C: ζ(yi

σ) = I(σ)(Pi) if Aen
last(σ[Pi]),Pi

6= ∅ and

ζ(xa
σ[Pi]

) = ηPi
(σ[Pi])(a) if a ∈ Aen

last(σ[Pi]),Pi
. This gives indentical mappings

from assignments to distributed schedulers and back for (i) and (ii), which means
we can prove both simultaneously.

For a distributed scheduler η and its associated assignment ζ, we now show
that Pη(σ↑) = ζ(P(ŝ, σ)) by induction on the length of σ: For paths of length 0
we have that Pη(ŝ↑) = 1 = ζ(P0(ŝ, ŝ)) and Pη(s↑) = 0 = ζ(P0(ŝ, s)), for s 6= ŝ.
For the inductive step, let the induction hypothesis (IH) be the following. Given
a path σ ∈ St

C of length k > 0, we have for any path σ′ length k − 1, that:
Pη(σ′) = ζ(Pk−1(ŝ, σ

′)). By case distinction we now have:

1. For last(σ) vanishing we have:

Pη(σ↑)
Def 9

=
∑

σ=σ′as

Pη(σ′↑) · η(σ′)(a)
IH
=

∑

σ=σ′as

ζ(Pk−1(ŝ, σ
′)) · η(σ′)(a)

Def 7
=

∑

σ=σ′as

ζ(Pk−1(ŝ, σ
′)) ·

n
∑

i=1,e(i,a,σ)

I(σ)(Pi) · ηPi
(σ[Pi])(a)

Def 11
=

∑

σ=σ′as

ζ(Pk−1(ŝ, σ
′)) · ζ(P(σ′, σ)) = ζ(Pk(ŝ, σ)).

2. For last(σ) tangible we have: Pη(σ↑)
Def 9

=
∑

σ=σ′µs Pη(σ′↑) · µ(s)
Def 11

=
IH

∑

σ=σ′µs ζ(Pk−1(ŝ, σ
′)) · ζ(P(σ′, σ)) = ζ(Pk(ŝ, σ)).

A.2 Proof of Theorem 1

Proof. For a distributed scheduler η with associated assignment ζ, as defined
in Lemma 1, we have Pη(♦≤tG) = Pη(

⋃{σ↑ | t(σ) ≤ t and last(σ) ∈ G}).
Now let the set of paths S̄ ⊂ St

C that end in a state in G, but do not pass
through G under way. It is obvious that the cylinders induced by these paths
do not overlap and that their union is the set of all paths that reach G within
t time-units. We then have: Pη(♦≤tG) = Pη(

⋃{σ↑ | σ ∈ S̄}) =
∑

σ∈S̄ Pη(σ↑) =
∑

σ∈S̄,|σ|=k ζ(Pk(ŝ, σ)) = ζ(
∑

σ∈S̄,|σ|=k Pk(ŝ, σ)) = ζ(P(♦ S̄)). The last equality
stems from the fact that a path σ of length k can only be reached for the first
time after exactly k steps in D.

A.3 Proof of Theorem 2

Proof. We associate strongly distributed schedulers η to assignments ζ following

Lemma 1. For the extra variables in Vz we choose ζ(zi,j

σ[Pi],σ[Pj]
) equals ζ

(

yi
σ

yi
σ+y

j
σ

)

if ζ(yi
σ + yj

σ) > 0 and 1 otherwise. Note that the value 1 is chosen arbitrarily
here.

20 G. Calin, P. Crouzen, P.R. D’Argenio, E.M. Hahn, L. Zhang

To prove Theorem 2 we must now show that any assignment that satisfies (3)
is associated to a strongly distributed scheduler and that any strongly distributed
scheduler is associated to an assigment that satisfies (3).

First, notice that for a path σ ending in a vanishing state and distinct I/O-
IPCs Pi and Pj that have immediate actions enabled after σ, we have that if

ζ(yi
σ) = 0 = ζ(yj

σ) then zi,j

σ[Pi],σ[Pj]
(yi

σ + yj
σ) = yi

σ holds, regardless the value of

ζ(zi,j

σ[Pi],σ[Pj]
).

Now, consider an assignment ζ with associated distributed scheduler η, and
suppose we find two paths σ, σ′ as above with ζ(yi

σ + yj
σ) 6= 0 6= ζ(yi

σ′ + yj
σ′),

σ[Pi] = σ′[Pi] and σ[Pj] = σ′[Pj]. Then (3) gives us that:

ζ

(

yi
σ

yi
σ + yj

σ

)

= ζ(zi,j

σ[Pi],σ[Pj]
) = ζ(zi,j

σ′[Pi],σ′[Pj]
) = ζ

(

yi
σ′

yi
σ′ + yj

σ′

)

Since ζ(yi
σ) corresponds to I(σ)(Pi) in η, and similarly for yj

σ, yi
σ′ , yj

σ′ , we have
that now Equation. (1) holds for η, which means that η is indeed strongly dis-
tributed. Since we have a one-to-one correspondence between distributed sched-
ulers and assigments, this also proves the reverse, that the assigment associated
to a strongly distributed scheduler satisfies (3). The remainder of the proof fol-
lows that of Theorem 1.

