
The Quest for Correctness The Quest for Correctness --
 Beyond Beyond a posterioria posteriori VerificationVerification

Joseph SifakisJoseph Sifakis
VERIMAG VERIMAG LaboratoryLaboratory
in collaboration with in collaboration with
A. A. BasuBasu, S. Bensalem, S. , S. Bensalem, S. BliudzeBliudze, B. , B. BonakdarpourBonakdarpour, M. , M. BozgaBozga, ,
M. M. JaberJaber, M. , M. GallienGallien. H. Nguyen, V. . H. Nguyen, V. SfyrlaSfyrla, R. Yan, R. Yan

SPIN 09SPIN 09
Grenoble, June 27th 2009Grenoble, June 27th 2009

Correctness by checking vs.
Correctness by construction

Building systems which are correct with respect to given
requirements

is the main challenge for all engineering disciplines

Correctness can be achieved:



Either by checking

that a system or a model of a system
meets given requirements



Or by construction

by using results such as algorithms,
protocols, architectures e.g. token ring protocol, time
triggered architecture

A big difference between Computing Systems Engineering and
disciplines based on Physics is the importance of a posteriori
verification for achieving correctness

O
V
E
R
V
I
E
W

3

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

Achieving Correctness

Ad hoc models
e.g. SystemC simulation

Formal models –

Verification

Physical prototypes

e.g. testing

Models
(Virtual SW Prototypes)

By construction:
algorithms, architectures

By Checking

Achieving correctness

Correctness: a system is correct if it meets its requirements

Exhaustivity

Correctness

for Free

A posteriori Verification

Verification
Method

RequirementsRequirementsSystem System
ModelModel

YES, NO, DON’TKNOW

Should be:


faithful

e.g.
whatever property
is satisfied for the
model holds for
the real system



generated
automatically

from system
descriptions

Should be:


consistent

e.g.
there exists some
model satisfying
them



complete e.g.
they tightly
characterize the
system’s behavior



As a rule, for infinite state models all non trivial properties

are
undecidable

e.g. bounded memory


Intrinsically high complexity for finite state models (state explosion
problem)

Beyond a posteriori Verification

–

Idea

Develop “divide and conquer”

verification techniques



Taking advantage of system structure and its properties e.g. for

 particular



architectures (e.g. client-server, star-like, time triggered)



programming models (e.g. synchronous, data-flow)



execution models (e.g. event triggered preempable

tasks)



For specific classes of properties such as deadlock-freedom,
mutual exclusion, timeliness

Beyond

a posteriori Verification

–

Principles



Component-based and faithful construction of models from
heterogeneous components



Tight coupling between design and verification -

Achieving
correctness through



Constructivity: compositionality/composability

techniques



Incrementality: reusing proofs for constituents



Property-preserving transformations



Minimalistic verification framework



Focus on state invariants and deadlock-freedom

O
V
E
R
V
I
E
W

8

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

ComponentComponent--based Constructionbased Construction

Build a component C satisfying given requirements f, from
 C0

a set of atomic

components described by their behavior
 GL

={gl1 , …, gli , …} a set of glue

operators on components

c1 c’1
gl1

c2 c’2

gl12
satisfies

fgl2



Move from single low-level

composition operators e.g. automata-

 based to families of high-level

composition operators e.g. protocols,
controllers



We need a unified composition paradigm

for describing and analyzing
the coordination between components to formulate heterogeneous

 system designs in terms of tangible, well-founded and organized
concepts

Glue Operators –

Operational Semantics

B1

gl
B2 Bn

We use operational semantics to define the meaning of a
composite component –

glue operators are “behavior
transformers”

Operational
Semantics

B

Glue Operators


build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators


can be specified by using a family of derivation rules (the
Universal Glue)

Glue Operators –

Operational Semantics

qi - ai i q’i iI 



qk - ak k kK

(q1 qn - a (q’1 q’n 

A glue operator

is a set of derivation rules of the form



I,K 

{1, …n}, I  , KI=



a= i I

aI

is an interaction


q’i = qi for i I

A glue

is a set of glue operators

Notice that, non deterministic choice and sequential
composition are not glue operators

gl(B1 ,B2)
a

b

ac

Glue Operators –

Operational Semantics: Example

a c

b

gl is defined by

q1 - a q’1
q1 q2 - a q’1 q2

q1 - a q’1 q2 - c q’2
q1 q2 - ac q’1 q’2

q1 - b q’1 

q2 - c
q1 q2 - b q’1 q2

B1 B2

Glue Operators –

Incremental Construction

c1 c’1 c2 c’2

gl
c2 c’2

gl2

c1 c’1
gl1

2. Flattening

gl1

1. Decomposition

gl

C1 C2 Cn




gl2

C2 Cn

C1

Glue Operators –

Compositionality

Build correct systems from
correct components: rules for
proving global properties from
properties of
individual components

We need compositionality results for the preservation of progress properties such as
deadlock-freedom and liveness as well as extra-functional properties

 
gl



ci sat Pi implies gl gl~ sat

gl(P1

, ..,Pn

)
gl

c1 cn

~

Glue Operators –

Composability

Essential properties of
components are preserved
when they are composed 

gl

 
gl



Property stability phenomena are poorly understood.
We need composability results e.g. non interaction of features in middleware,
composability of scheduling algorithms, composability of web services

X
sat Pgl

c1 cn
and sat P’gl’

c1 cn

implies sat PP’gl  gl’
c1 cn

O
V
E
R
V
I
E
W

16

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

BIP –

Basic Concepts

B E H A V I O R

Interactions (collaboration)
Priorities (conflict resolution)

Layered component model

Composition operation

parameterized

by glue

IN12, PR12

IN12
PR12

PR1
IN1

PR2
IN2 IN1  IN2

 IN12

PR1  PR2

 PR12

BIP –

Basic Concepts

s

Sender

r1

Receiver1

Interactions: sr1r2r3

Priorities: 

Rendezvous

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP –

Basic Concepts

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

Priorities: x 

xy

for x,xyInteractions

Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP –

Basic Concepts

Interactions: s + sr1r2r3

Priorities: x 

xy

for x,xyInteractions

Atomic

Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP –

Basic Concepts

Interactions: s + sr1 + sr1r2 + sr1r2r3

Priorities: x 

xy

for x,xyInteractions

Causal Chain

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP –

Basic Concepts: Semantics

Interactions a  i[1,n] qi - aPi i q’i
(q1 qn - a

(q’1 q’n where q’I =qI if aPi =



a set of atomic components {Bi }i=1..n
where Bi =(Qi , 2Pi, i)



a set of interactions 



priorities , partial order on interactions

(B1,., Bn)

Priorities

q- a

q’  

(

q- b

 a  b)
 q- a

q’

O
V
E
R
V
I
E
W

23

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

Modeling Interactions –

Simple Connectors

s + sr2 + sr3 +sr2r3

 A connector is a set of ports

that can be involved in an interaction

tick1 tick2 tick3

s r2 r3

tick1tick2tick3



Port attributes (trigger , synchron) are used

to model
rendezvous and broadcast.



An interaction of a connector is a set of ports such that: either it
contains some trigger or it is maximal.

Express interactions by combining two protocols: rendezvous

and broadcast

Modeling Interactions –

Hierarchical Connectors

Atomic

Broadcast:
a+abc

Causality

chain: a+ab+abc+abcd

b c

bc

c d

c(1+d)

a(1+bc)

a

y=
b(1+y)

b

x=
a(1+x)

a

Modeling Interactions –

The Algebra of Connectors

bc
a(1+bc)

a b c

Atomic

Broadcast
a’[bc]

b(1+c(1+d))
c(1+d)

a(1+b(1+c(1+d)))

a b c d

Causality

chain
a’[b’[c’d]]

a(1+b)(1+c)

a b c

Broadcast
a’bc

Modeling Interactions –

The Algebra of Connectors

a b c a b c


+

[a’b]’c a’bc

a ba

a’b’

a b

a’b

a ba

ab’

O
V
E
R
V
I
E
W

28

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

Modeling Priorities –

Definition

g1 g2

Priority rule Restricted guard g1’
true  p1



p2

g1’

= g1 



g2

C  p1



p2

g1’

= g1 

C



g2)

p1 p2

Priority rules

Modeling Priorities –

FIFO policy

PR : t1

t2 

b1b2 t2<t1 

b2b1

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2


start t1 start t2

Modeling Priorities –

EDF policy

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2


PR: D1-t1

D2-

t2  b2

b1 D2-t2< D1-t1  b1

b2

start t1 start t2

t1 D1 t2 D2

Modeling Priorities –

Composability

PR1
PR2

 PR2
PR1

a 1

b b2

c

b2

c
a 1

b

a c
b

c
b

c

a ca c

Modeling Priorities –

Composability

PR1PR2 is the least priority containing PR1PR2

Results :
•The operation 

is partial, associative and commutative

• PR1(PR2(B))PR2(PR1(B))
• PR1PR2(B) refines PR1PR2(B) refines PR1(PR2(B))
• Priorities preserve deadlock-freedom

PR1
PR2 PR1PR2

We take:

=

Modeling Priorities –

Mutual Exclusion + FIFO policy

true



b1

f2 true



b2

f1

t1

t2 

b1

b2 t2< t1 

b2

b1

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2

start t1 start t2

Modeling Priorities –

Mutual Exclusion: Example

s1 b1

w2
a1

f1

a2

f2

PR : b1 

f2 b2 

{ f1, b1’} (mutex on R)

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: PRPR’

is not defined

PR’: b2’

f1 b1’



{ f2, b2 }

(mutex on R’)

s2

O
V
E
R
V
I
E
W

36

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

Expressiveness for Component-based Systems

gl3

c1 c2 c3 c4

gl1 gl2

c1 c3 c2 c4

gl1

gl1
gl1

Given two glues G1

, G2

G2 is strongly more expressive than G1

if for any component built by using G1 and C0

there exists an equivalent component built by using G2

and C0





Different from the usual notion of expressiveness!



Based on strict separation between glue and behavior

Expressiveness for Component-based Systems

gl3

c3c1 c2

gl1
c1 c3 c c2

gl1

gl1
gl1

Given two glues G1

, G2

G2

is weakly more expressive than G1

if for any component built by using G1

and C0

there exists an equivalent component built by using G2

and C0



C
where C

is a finite set of coordination behaviors.



Expressiveness for Component-based Systems

BIP IM CCS

SCCS

CSP

<S

<S

<S

<S W >W >

W >

W >

[Bliudze&Sifakis, Concur 08]

S
Universal

 Glue

O
V
E
R
V
I
E
W

40

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

Compositional Verification

Verify global deadlock-freedom

of a system
by separate analysis of the components and of the architecture.

K1 K2
p1 p2 K1 K2

q1 q2

p1 p2

Potential deadlock
D = en(p1)   en(p2) 

 en(q2)   en(q1)

K3

K2K1
p1 p2

q3r3

r1 q2
Potential deadlock
D = en(p1)   en(p2) 

en(q2)   en(q3) 
en(r3)   en(r1)

Method:
Eliminate potential deadlocks D
by computing compositionally
global invariants 

such that

D=false

Compositional Verification: D-Finder

B11

□ 1 1 B22

□ 22



II((B11

, B2 2)11

22

) 11

 22

  

(B11

, B2 2)



□

11

22



reachable
states

Compositional Verification –

D-Finder

x

a

y

b

ab
u

c

d

z

v

w

c

r

d

dc

a

b

b

a

d

c

x

 yu
y  xz

z

(yu)(vr)
u  xz
v  wz

w

 (vr)
r  wz

Minimal solutions define invariants :


Component invariants: xy, zu

v, wr


Interaction invariants: xu, zyv, zyr , zur, wv

Compositional Verification –

D-Finder

Verification
Component
Deadlock-

freedom

generation
D

BIP model

Abstraction and
II generation

Satisfiability
II 

CI 

D

DCI

II Deadlock
confirmation

BIP
simulationYices

Omega

DeadlocksDeadlock-freedom

false-strengthen false-give

up
false

generation
CI

Overall BIP Toolset Architecture

BIP Program

compiler

BIP Model

code
generation

BIP/Linux
Platform

BIP C++ Code
centralized/distributed

execution,
guided/exhaustive

simulation

D-FINDER

BIP2BIP

BIP MetaModel

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Compositional Verification –

D-Finder

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Example Number
of
Comp

Number
of Ctrl
States

Number
of Bool

Variable

s

Numb
of Int

Var

Number
Potential
Deadlocks

Number
Remaining
Deadlocks

Verification
Time

Temperature Control (2
rods)

3 6 0 3 8 3 3s

Temperature Control (4
rods)

5 10 0 5 32 15 6s

UTOPAR
(40 cars,256 CU)

297 795 40 242 -- 0 3m46s

UTOPAR
(60 cars, 625 CU)

686 1673 60 362 -- 0 25m29s

R/W(10000 readers) 10002 20006 0 1 -- 0 36m10s

Philosophers (13000) 26000 65000 0 0 -- 3 38m48s

Philosophers (10000) 20000 50000 0 0 -- 3 29m30s

Smokers (5000) 5001 10007 0 0 -- 0 14m

Gas stations (500 pumps,

5000 customers)

5501 21502 0 0 -- 0 18m55s

Compositional Verification –

D-Finder

Incremental Verification

1

IN1

IN1

IN12

IN12











IN123

IN123











IN2

IN2

2

IN3

IN3

3

System Construction Space

A system is defined as a point of the 3-

 dimensional space
Separation of concerns: any combination of
coordinates defines a systemBe

ha
vi

or

 B
H

IN Interaction

P
R

 P

rio
rit

y

Architecture

System

System Construction Space –

Incrementality

Study


property preservation results by

 elementary model transformations


transformations relating classes of
systems e.g. untimed-timed,
synchronous-asynchronous

BH
s

INa

asynchronousP
R

a
P

R
s

synchronous

BH
a

INs

System Construction Space –

Incrementality

IN1

‹

IN2

if for any interaction of
IN2 contains one in IN1

B

‹

INB1<<B2 if
B1 simulates
B2 and the
simulation
relation is
total

invariance

dl-freedom

dl
-fr

ee
do

m

in
va

ria
nc

e

<<

O
V
E
R
V
I
E
W

52

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

Autonomous Systems

Functional

and Control Level
ModuleModule

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Poster Poster

Functional

and Control Level

::= Module+

Module

::= Service+

. Poster

Service

::= Service Controller . Service Task

Service Controller ::= Event Triggered

Controller | Cyclic

Controller

Cyclic

Controller

::= Event Triggered

Controller

. Cyclic

Trigger

Service Task

::= Timed

Task

| Untimed

Task

The DALA Robot –

Componentization

Ready

Idle

Exec

Abort

trigger

request

interrupt

abort

abort
finish

trigger

interrupt abort requestfinish

Idle: the Service is

idle

Ready: checks

the possibility

for
starting

a new Task

of the Service

Exec: execution

of the Task

of the
Service

Abort: Service is

aborted

The DALA Robot –

Event Triggered Controller

Cyclic

Controller

::=
Event Triggered

Controller . Cyclic

Trigger

Exectick
count<p / count++ count == p / count = 0

trigger

trigger

tick
Cyclic

Trigger

trigger

interrupt abort requestfinish

Event Triggered

Controller

tick

interrupt abort finish request

The Cyclic

Trigger starts

the Event Triggered

Controller every

period

p

The DALA Robot –

Cyclic Controller

Triggered

by request

The variable status specifies

the previous

state of Task
status == 1 : Task

successfully

executed

status == 0 : Task

aborted

interrupt requestabort finish

Exec

Abort

Idle

request

interrupt
abort

finish

read

write

read

write

state

state
state

state

status

status

:= 1

The DALA Robot –

Untimed Task

interrupt requestabort finish

Exec

Abort

Idle

request

abort

finish /status:=1

read
write

tick

read

tick
tick

write
count < t2 / count++

t1 ≤

count ≤

t2 state

state
state

state

status

/count:=0

interrupt

• Obtained

from

an Untimed Task
• Its

execution

time is

in [t1,t2]

The DALA Robot –

Timed Task

Untimed Event Triggered

Service
::= Event Triggered

Controller. Untimed Task

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Untimed Taskread

state
statestatuswrite

Untimed Event
Triggered

Service

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Timed

Task

read

state
statestatuswrite

tick

Timed

Event Triggered

Service

intrpt req abort finish

intrpt req abort finish

Cyclic

Controller

Timed

Task

read

state
statestatuswrite

tick

tick

tick

Cyclic

Service

Timed

Event Triggered

Service ::= Event Triggered

Controller. Timed

Task

Cyclic

Service ::= Cyclic

Controller . Timed

Task

The DALA Robot –

Different types of Services

A module composed of 3 services and a poster

Module

tick

offer

Exec
writeoffer

offer write
data

Poster

read

req okabortintrpt
tick read

tick

write

read

Cyclic Service

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

tick

tick

read tick

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

write
write

read

Untimed Event
Triggered Service

state
state
status state

state

state

state

readread

write
write status

req okabortintrpt

write

trigger

trigger

tick

status

Timed Event
Triggered Service

The DALA Robot –

A Module

O
V
E
R
V
I
E
W

61

 Current status

 Beyond a posteriori verification


Component-based Construction


The BIP Component Framework


Verification at Design Time

 Conclusion

Conclusion



Move from a posteriori verification to verification at design time –

 adequate framework for component-based construction



Minimalistic approach for verification –

focus on state invariance
and deadlock-freedom



Achieve correctness through


Constructivity: compositionality/composability

techniques



Incrementality: reusing proofs for constituents



Property-preserving transformations

THANK YOU THANK YOU

	The Quest for Correctness - Beyond a posteriori Verification
	Correctness by checking vs. �			Correctness by construction
	Slide Number 3
	Achieving Correctness
	A posteriori Verification
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Component-based Construction
	Glue Operators – Operational Semantics
	Glue Operators – Operational Semantics
	Glue Operators – Operational Semantics: Example
	Glue Operators – Incremental Construction
	Glue Operators – Compositionality
	Glue Operators – Composability
	Slide Number 16
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts: Semantics
	Slide Number 23
	Modeling Interactions – Simple Connectors
	Modeling Interactions – Hierarchical Connectors
	Modeling Interactions – The Algebra of Connectors
	Modeling Interactions – The Algebra of Connectors
	Slide Number 28
	Modeling Priorities – Definition
	Modeling Priorities – FIFO policy
	Modeling Priorities – EDF policy
	Modeling Priorities – Composability
	Modeling Priorities – Composability
	Modeling Priorities – Mutual Exclusion + FIFO policy
	Modeling Priorities – Mutual Exclusion: Example
	Slide Number 36
	Expressiveness for Component-based Systems
	Expressiveness for Component-based Systems
	Expressiveness for Component-based Systems
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Compositional Verification – D-Finder
	Slide Number 44
	Overall BIP Toolset Architecture
	Slide Number 46
	Slide Number 47
	Incremental Verification
	System Construction Space
	System Construction Space – Incrementality
	System Construction Space – Incrementality
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63

