The Quest for Correctness -

Beyond a posteriori Verification

SPIN 09
Joseph Sifakis Grenoble, June 27th 2009

VERIMAG Laboratory

in collaboration with

A. Basu, S. Bensalem, S. Bliudze, B. Bonakdarpour, M. Bozga,
M. Jaber, M. Gallien. H. Nguyen, V. Sfyrla, R. Yan

Correctness by checking vs.

Correctness by construction

Building systems which are correct with respect to given
requirements is the main challenge for all engineering disciplines

Correctness can be achieved:

= Either by checking that a system or a model of a system
meets given requirements

= Or by construction by using results such as algorithms,
protocols, architectures e.g. token ring protocol, time
triggered architecture

A big difference between Computing Systems Engineering and
disciplines based on Physics is the importance of a posteriori
verification for achieving correctness

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
* The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

g® Achieving Correctness

Correctness: a system is correct if it meets its requirements

Achieving correctness

< P nstruc’Flon: By Checking
|) Ithms, arcr]lte(:tljre/\
Physical prototypes Models
e.g. testing (Virtual SW Prototypes)
Ad hoc models Formal models — Verifice

e.g. SystemC simulation

g A posteriori Verification

Should be:

O faithful e.g.
whatever property
Is satisfied for the
model holds for e o them
the real system Verification O complete e.g.

Q generated Method they tightly
automatically characterize the
from system 1 system’s behavior

descriptions YES, NO, DON'TKNOW

O As arule, for infinite state models all non trivial properties are
undecidable e.g. bounded memory
O Intrinsically high complexity for finite state models (state explosion

problem)

Should be:
(O consistent e.g.
there exists some
model satisfying

Beyond a posteriori Verification — ldea

Develop “divide and conquer” verification techniques

O Taking advantage of system structure and its properties e.g. for
particular

= architectures (e.g. client-server, star-like, time triggered)
= programming models (e.g. synchronous, data-flow)

= execution models (e.g. event triggered preempable tasks)

O For specific classes of properties such as deadlock-freedom,
mutual exclusion, timeliness

Beyond a posteriori Verification — Principles

Component-based and faithful construction of models from
heterogeneous components

Tight coupling between design and verification - Achieving
correctness through

= Constructivity: compositionality/composability techniques
» Incrementality: reusing proofs for constituents

» Property-preserving transformations

Minimalistic verification framework

= Focus on state invariants and deadlock-freedom

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
= The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

Component-based Construction

Build a component C satisfying given requirements f, from
" ¢, a set of atomic components described by their behavior
» g2 ={gl,, ..., gl, ...} a set of glue operators on components

gl12
satisfies f
G| [c; ZRLY:

O Move from single low-level composition operators e.g. automata-
based to families of high-level composition operators e.g. protocols,
controllers

L We need a unified composition paradigm for describing and analyzing
the coordination between components to formulate heterogeneous
system designs in terms of tangible, well-founded and organized

concepts

Glue Operators — Operational Semantics

We use operational semantics to define the meaning of a

composite component — glue operators are “behavior
transformers”

B
B, | B B | w—>
Operational
Semantics

Glue Operators
= build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators

= can be specified by using a family of derivation rules (the
Universal Glue)

Glue Operators — Operational Semantics

A glue operator is a set of derivation rules of the form

Wi~ =29 g 4= G- 8 = frex
(qlﬁ' 9 qn) -a— (q’lr ° q’n)

= LK {1, ..n}, | £ 3, Knl=g

= a=UJ,_, a, isan interaction
= q,=gq; fori ¢l

Notice that, non deterministic choice and sequential
composition are not glue operators

A glue is a set of glue operators

Glue Operators — Operational Semantics: Example

gl is defined by

q,-a—>q’
d;0,-a—>0d;,0q,

Jd,-a—>Qq; (,-Cc—>0),

d,0,-ac—-=q;q,

q,-b—=q;, —0g,-c—

q,:d,-b—>0.0,

acC

Glue Operators — Incremental Construction

1. Decomposition

H
112

¢ |G ¢
2. Flattening
~

g Glue Operators — Compositionality

Build correct systems from

correct components: rules for
proving global properties from
properties of

individual components

C sat Pi implies Vgl Hai

We need compositionality results for the preservation of progress properties such as
deadlock-freedom and liveness as well as extra-functional properties

g Glue Operators — Composability

Essential properties of

components are preserved @
when they are composed

atP and g/’ [N
G ¢ ¢ ¢
_ @ gl’ ,
implies c AL o sat PAP

Property stability phenomena are poorly understood.
We need composability results e.g. non interaction of features in middleware,
composability of scheduling algorithms, composability of web services

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
* The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

a BIP — Basic Concepts

Layered component model

Priorities (conflict resolution
Interactions (collaboration

Y——— on)
: on)
B El H A V Il O R

Composition operation parameterized by glue IN12, PR12

PR12
IN12

PR1 ® PR2 ® PR12

PR1 PR2
— N1 Ml N2 : INT® IN2 ® IN12
| |

g BIP — Basic Concepts

Priorities: &

Interactions: sr1r2r3

S r1 r2 r3
T Tm j)rz ?3
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Rendezvous

g BIP — Basic Concepts

Priorities: x { xy for x,xyeInteractions

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

S r1 r2 r3
T Tm j)rz ?3
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Broadcast

g BIP — Basic Concepts

Priorities: x { xy for x,xyeInteractions

Interactions: s + sr1r2r3

S r1 r2 r3
T Tm j)rz ?3
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Atomic Broadcast

g BIP — Basic Concepts

Priorities: x { xy for x,xyeInteractions

Interactions: s + sr1 +sr1r2 + sr1r2r3

S r1 r2 r3
T Tﬂ T’Z Tﬁ
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Causal Chain

i BIP — Basic Concepts: Semantics

\
= a set of atomic components {B;}_; |,

where B, =(Q,, 27, —)

= aset of interactions y > 7y7(B1,., Bn)

= priorities &, partial order on interactions

/

Interactions acy A Vie[ll,n] ;- anP;—q’
(d1..- 9.)- @ —,(d'1... ',) Where ', =q,if anP=&

Priorities g-a—=,q A —-(3g-b—>, razb)
q-a—, q

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
* The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

Modeling Interactions — Simple Connectors

Express interactions by combining two protocols: rendezvous and broadcast
= A connector is a set of ports that can be involved in an interaction

= Port attributes (trigger © , synchron @) are used to model
rendezvous and broadcast.

= An interaction of a connector is a set of ports such that: either it
contains some trigger or it is maximal.

tick1tick2tick3
tick1 tick2 tick3
S r2 ra

S + sr2 + sr3 +sr2r3

Modeling Interactions — Hierarchical Connectors

Atomic Broadcast: bc
a+abc

Causality chain: a+ab+abc+abcd

a(1+x) Y=b(1+y)

y=c(1+d)

Modeling Interactions — The Algebra of Connectors

Broadcast
abc

Atomic Broadcast
a’'[bc]

Causality chain
a'[b’[c'd]]

a(1+b)(1+c)
a b C
a(1+bc)
bc
a b C
a(l1+b(1+c(1+d)))
b(1+c(1+d))

c(1+d)

Modeling Interactions — The Algebra of Connectors

a b C a b C
— _/ — _/
' '
[a'b]'c a’bc
~ +
a b a b a b

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
* The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

gh Modeling Priorities — Definition

Priority rules

p1 p2
g1 g2
Priority rule Restricted guard g1’
true - p1(p2 g1’ =gl A— g2

C - p1{p2 g1’=g1 A—(C A g2)

a8 Modeling Priorities — FIFO policy

PR:t1<t2 > b1(b2 t2<t1 - b2(b1

idle1 idle2 ()
al a2 \

start t1 start t2
C) ready ready2 C)
b1 b2

exec1 <—#—» exec2

- \Modeling Priorities — EDF policy

PR: D1-t1<D2-t2 —» b2(b1 D2-t2< D1-t1 — b1{ b2

idle1 idle2 ()
al a2 \

start t1 start t2
O ready1 ready2 ()
b1 b2
t1 <D1 t2 <D2

exec1 - # > exec2

Modeling Priorities — Composability

+
a (b QD\C b(?c CKC
b v
b(ZC a/sz —ﬁ
a(lb

[\

g® Modeling Priorities — Composability

We take:

— PR
A PR1&PR2

PR1® PR2 is the least priority containing PR1UPR2

Results :
*The operation @ is partial, associative and commutative

 PR1(PR2(B)) #PR2(PR1(B))
* PR1® PR2(B) refines PR1UPR2(B) refines PR1(PR2(B))
* Priorities preserve deadlock-freedom

Modeling Priorities — Mutual Exclusion + FIFO policy

t1<t2 > b1(b2 t2<t1 » b2(b1

true - b1(2 true —» b2(f1

idle1 idle2 ()
al a2 \

start t1 start t2
C) ready ready2 C)
b1 b2

exec1 exec2

Modeling Priorities — Mutual Exclusion: Example

PR: b1{(f2 b2{({f1,b1} (mutexonR)
PR’ b2’ (f1 b1 ({f2,b2} (mutexonR’)

Risk of deadlock: PR®PR’ is not defined

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
* The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

Expressiveness for Component-based Systems

Different from the usual notion of expressiveness!

Based on strict separation between glue and behavior

Given two glues G, , G,

G, Is strongly more expressive than G,
if for any component built by using G, and ¢,

there exists an equivalent component built by using G, and ¢,

|12

Expressiveness for Component-based Systems

Given two glues G, , G,

G, Is weakly more expressive than G,
if for any component built by using G, and ¢,

there exists an equivalent component built by using G, and &, ¢
where ¢ is a finite set of coordination behaviors.

|12

Expressiveness for Component-based Systems

SCCS
w7 <s
< <
ccs X s [m X > BIp
=3
Universal
W;é <S Glue
CSP

[Bliudze&Sifakis, Concur 08]

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
= The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

o Compositional Verification

Verify global deadlock-freedom of a system
by separate analysis of the components and of the architecture.

p1 2
p1 P2 O P

K2 K1 o K2

q1 q2

K1

Potential deadlock
D =en(pl) » —en(p2) »
en(g2) A —en(ql)

1 Potential deadlock

D =en(pl) » —en(p2) A
en(q2) An —en(g3) A

® K3 en(r3) A —en(rl)

Compositional Verification: D-Finder

By[=0¢4 By|=06¢, we ll(y(Bq, By).d01,02) &4 Ao A y= 7

Method:

Eliminate potential deadlocks D
by computing compositionally
global invariants ¢ such that
y~D=false

y(B’], BZ) |: DX

g <

states

- Compositional Verification — D-Finder

c d
b a
b b d d
X = yvu Z =(yvu)A(vvr) w = (vvr)
Yy = XVvZ U= Xvz r = wvz
V= WvZ

Minimal solutions define invariants :
= Component invariants: xvy, zvu vv, wvr
» |nteraction invariants: xvu, zvyvyv, zvyvr , Zvuvr, Wwv

Compositional Verification — D-Finder

BIP model
D
> l
+ Verification * ¢
Omega > Component generation generation
Deadlock- Cl D
freedom
Abstraction and
Il generation l
\ 4 \ 4
Satisfiability Deadlock BIP
Yices | »f IACIAD confirmation simulation
A
#false-strengthen #false-give u
9 false 9 P

v
Deadlock-freedom

Deadlocks

a8 Overall BIP Toolset Architecture

compiler

BIP Model D-FINDER

BIP2BIP

code

generation @@Iﬂﬂﬁej\

¢

centralized/distributed -

execution, _
guided/exhaustive BIP/Linux

simulation Platform

Compositional Verification — D-Finder

Examp|e Number | Number | Number | Numb [Number Number Verification
of of Ctrl of Bool of Int | Potential Remaining | Time
Comp States | Variable | Var Deadlocks | Deadlocks
S
Temperature Control (2 3 6 0 3 8 3 3s
rods)
Temperature Control (4 5 10 0 5 32 15 6s
rods)
UTOPAR 297 795 40 242 -- 0 3m46s
(40 cars,256 CU)
UTOPAR 686 1673 60 362 -- 0 25m29s
(60 cars, 625 CU)
R/W(10000 readers) 10002 20006 0 1 -- 0 36m10s
Philosophers (13000) 26000 65000 0 0 -- 3 38m48s
Philosophers (10000) 20000 50000 0 0 -- 3 29m30s
Smokers (5000) 5001 10007 0 0 -- 0 14m
Gas stations (500 pumps, | 5501 21502 0 0 -- 0 18m55s

5000 customers)

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Compositional Verification — D-Finder

Verification time (minutes)

250
240
230
220
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

- bun’;pus'itinr":al verification —+— _

i Incremental compositional verification
Monolithic verification: NUSMY --- #---

| .' L

:Aﬂd--: i I | 1 1] 1 l 1 1 1 | 1 1 | 1] l 1 | l 1 |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Gas Station: size = N x (10 pumps and 100 customers)

50

' Incremental Verification

1

X3

e e

X1 X2
X12 = 012 (X1s A2)

X123 = D123 (X120 X3)

System Construction Space

PR Priority

D S Q Architecture

IN Interaction
, >

Q
S A system is defined as a point of the 3-
= dimensional space
> Separation of concerns: any combination of
Q coordinates defines a system

System Construction Space — Incrementality

PRa

Study
= property preservation results by
elementary model transformations
» transformations relating classes of
systems e.g. untimed-timed,
synchronous-asynchronous

System Construction Space — Incrementality

B1<<B2 if
B1 simulates
B2 and the
simulation
relation is
total

IN1 ¢ IN2

if for any interaction of
IN2 contains one in IN1

IN < dI-freedom]
® >
Invariance >

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
= The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

Dedsional Lavel
Procedural , , Temporal Planner

1t

Execution Control Level ™
Execufion Controller

P

Fundional Level

Autonomous Systems

Dedisional Level

Procedural Temporal Planner

Execution Control Level ﬁ

Executive - Temporal Executive
xTeT)

Execution Contler

3

Fundtional Level it

Walk Planning

/_ e
HueBlob S:;) L“—/

/Fr* \ .. GIK

RP2
HRPZ S\
Stereo |0) Sl Whole Body [seits
g Motion

(| PocoLib / Corba

{'
Camera | in

Joint mn (1ms)

Dedisional Level
Procedural Temporal Planner

Executive Temporal Executive

(xTeT)

Execution Control Level @
Execution Contoller

Fundional Level <>
=
NAV | Goal P
. [/J Communication
DEM [Emv |
/ ' »
PaD [spoed | —
20 (=)o

‘Smn‘el L‘y ‘ VME Lpislj _.
Aspect jcnsj
o [
Science

. 3 Laser ¥2 N
Camerapn) = AF ;sﬁn/
PanTit| 8 N
Unit os | RFLEX

S

The DALA Robot — Componentization

Controller Controller Controller Controller
Task Task Task Task
Poster Poster
Service Service L Service Service L o0 o
Module Module

Functional and Control Level

Functional and Control Level ::= Module*

Module ::= Service* . Poster
Service ::= Service Controller . Service Task

Service Controller ::= Event Triggered Controller | Cyclic Controller

Cyclic Controller ::= Event Triggered Controller . Cyclic Trigger

Service Task ::= Timed Task | Untimed Task

The DALA Robot — Event Triggered Controller

Idle: the Service is idle

Ready: checks the possibility for
starting a new Task of the Service

Exec: execution of the Task of the
Service

Abort: Service is aborted

trigger

interrupt trigger

e

interrupt abort finish request

finish

T abort

request

B The DALA Robot — Cyclic Controller

Cyclic Controller ::=
Event Triggered Controller . Cyclic Trigger

The Cyclic Trigger starts the Event Triggered Controller every period p

Cyclic Trigger

tick
tick trigger tick
count<p / count++ count==p/count =0

trigger
I

trigger

Event Triggered Controller

interrupt abort finish request

interruptI abort ! finish ! I request

The DALA Robot — Untimed Task

Triggered by request

interrupt abort finish request

read

reques read
finish
_ Exec
status := 1
state ’ state

interrupt

write

The variable status specifies the previous state of Task
status == 1 : Task successfully executed
status == 0 : Task aborted

O The DALA Robot — Timed Task

* Obtained from an Untimed Task
* Its execution time is in [t1,{2]

interrupt abort finish request

request read tick

Icount:=0

finish /status:=1

tick
count < t2 / count++

write state

Q
S

The DALA Robot — Different types of Services

Untimed Event Triggered Service
::= Event Triggered Controller. Untimed Task

Timed Event Triggered Service ::= Event Triggered Controller. Timed Task

Cyclic Service ::= Cyclic Controller . Timed Task

l trigger

Event Triggred
Controller
intrpt req abort finish

intrpt req abort finish

read Untimed Task

- state © ™

Untimed Event
Triggered Service

| trigger

Event Triggred
Controller

intrpt req abort finish

intrpt req abort finish
read

Timed Task tick

- state . ™

[it state

Timed Event Triggered Service

tick

Cyclic Controller

intrpt req abort finish

intrpt req abort finish
read
- tick ¢ —

Timed Task

i¢k

e state” =

Cyclic Service

A module composed of 3 services and a poster

n The DALA Robot — A Module

read trigger I read trigger l —l‘\'i'cr read
trigger I triggerI tick tick
trigger trigger
tick trigger
Lo — I
intrpt req abort ok intrpt req abort ok :
l l l , trigger
i abort ok
intrpt req abort ok intrpt req abort ok réq_intrpt
=0)~ read state =)=0 read tick & tick L1 1]
read statel = read | I I I
= write = write State g
write Write state req intrpt abort ok |
i = tick —{ @—
Untimed Event Timed Event read
Triggered Service Triggered Service state
= write state(=
write S
offer [daid offer write statu
offer .
write Cyclic Service
Poster

Module

1 Current status

1 Beyond a posteriori verification
= Component-based Construction
= The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O

a® . Conclusion

O Move from a posteriori verification to verification at design time —
adequate framework for component-based construction

O Minimalistic approach for verification — focus on state invariance
and deadlock-freedom

L Achieve correctness through
= Constructivity: compositionality/composability techniques

= Incrementality: reusing proofs for constituents

= Property-preserving transformations

THANK YOU

	The Quest for Correctness - Beyond a posteriori Verification
	Correctness by checking vs. �			Correctness by construction
	Slide Number 3
	Achieving Correctness
	A posteriori Verification
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Component-based Construction
	Glue Operators – Operational Semantics
	Glue Operators – Operational Semantics
	Glue Operators – Operational Semantics: Example
	Glue Operators – Incremental Construction
	Glue Operators – Compositionality
	Glue Operators – Composability
	Slide Number 16
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts
	BIP – Basic Concepts: Semantics
	Slide Number 23
	Modeling Interactions – Simple Connectors
	Modeling Interactions – Hierarchical Connectors
	Modeling Interactions – The Algebra of Connectors
	Modeling Interactions – The Algebra of Connectors
	Slide Number 28
	Modeling Priorities – Definition
	Modeling Priorities – FIFO policy
	Modeling Priorities – EDF policy
	Modeling Priorities – Composability
	Modeling Priorities – Composability
	Modeling Priorities – Mutual Exclusion + FIFO policy
	Modeling Priorities – Mutual Exclusion: Example
	Slide Number 36
	Expressiveness for Component-based Systems
	Expressiveness for Component-based Systems
	Expressiveness for Component-based Systems
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Compositional Verification – D-Finder
	Slide Number 44
	Overall BIP Toolset Architecture
	Slide Number 46
	Slide Number 47
	Incremental Verification
	System Construction Space
	System Construction Space – Incrementality
	System Construction Space – Incrementality
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63

