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Correctness by checking vs. 
Correctness by construction

Building systems which are correct with respect to given 
requirements

 

is the main challenge for all engineering disciplines 

Correctness can be achieved:



 

Either by checking

 

that a system or a model of a system 
meets given requirements



 

Or by construction

 

by using  results such as algorithms, 
protocols, architectures e.g. token ring protocol, time 
triggered architecture

A big difference between Computing Systems Engineering and 
disciplines based on Physics is the importance of a posteriori 
verification for achieving correctness
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Achieving Correctness

Ad hoc models 
e.g. SystemC simulation

Formal models –

 

Verification

Physical prototypes

 
e.g. testing

Models 
(Virtual SW Prototypes)

By construction: 
algorithms, architectures

By Checking

Achieving correctness

Correctness: a system is correct if it meets its requirements 

Exhaustivity

Correctness

for Free



A posteriori Verification 

Verification 
Method

RequirementsRequirementsSystem System 
ModelModel

YES, NO, DON’TKNOW

Should be: 


 

faithful

 

e.g. 
whatever property 
is satisfied for the 
model holds for 
the real system



 

generated 
automatically

 
from system 
descriptions

Should be: 


 

consistent

 

e.g. 
there exists some 
model satisfying 
them



 

complete e.g. 
they tightly 
characterize the 
system’s behavior



 

As a rule, for infinite state models all non trivial properties

 

are 
undecidable

 

e.g. bounded memory


 

Intrinsically high complexity for finite state models (state explosion 
problem)



Beyond a posteriori Verification
 

–
 

Idea

Develop “divide and conquer”

 

verification techniques  



 

Taking advantage of system structure and its properties e.g. for

 particular 



 

architectures (e.g. client-server, star-like, time triggered)



 

programming models (e.g. synchronous,  data-flow)



 

execution models (e.g. event triggered preempable

 

tasks) 



 

For specific classes of properties such as deadlock-freedom, 
mutual exclusion, timeliness 



Beyond
 

a posteriori Verification
 

–
 

Principles



 

Component-based and faithful construction of models from 
heterogeneous components



 

Tight coupling between design and verification -

 

Achieving 
correctness through 



 

Constructivity: compositionality/composability

 

techniques



 

Incrementality: reusing proofs for constituents  



 

Property-preserving transformations



 

Minimalistic verification framework



 

Focus on state invariants and deadlock-freedom
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ComponentComponent--based Constructionbased Construction

Build a component C satisfying given requirements f, from 
 C0

 

a set of atomic

 

components described by their behavior
 GL

 

={gl1 , …, gli , …} a set of glue

 

operators on components

c1 c’1
gl1

c2 c’2 

gl12
satisfies

 
fgl2



 

Move from  single low-level

 

composition operators e.g. automata-

 based to families of high-level

 

composition operators e.g. protocols, 
controllers



 

We need a unified composition paradigm

 

for describing and analyzing 
the coordination between components to formulate heterogeneous

 system designs in terms of tangible, well-founded and organized 
concepts 



Glue Operators –
 

Operational Semantics

B1

gl
B2 Bn

We use operational semantics to define the meaning of a 
composite component  –

 

glue operators are “behavior 
transformers”

Operational
Semantics

B

Glue Operators 


 

build interactions of composite components from the actions of 
the atomic components e.g. parallel composition operators


 

can be specified by using  a family of derivation rules (the 
Universal Glue)



Glue Operators –
 

Operational Semantics

qi - ai i q’i iI 
 


 

qk - ak k kK

(q1 qn - a (q’1 q’n 

A glue operator
 

is a set of derivation rules of the form



 
I,K 

 
{1, …n}, I  , KI=



 
a= i I

 

aI

 

is an interaction


 
q’i = qi for i I

A glue
 

is a set of glue operators

Notice that, non deterministic choice and sequential 
composition are not glue operators



gl(B1 ,B2 )
a

b

ac

Glue Operators –
 

Operational Semantics: Example

a c

b

gl is defined by

q1 - a q’1               
q1 q2 - a q’1 q2

q1 - a q’1 q2 - c q’2 
q1 q2 - ac q’1 q’2

q1 - b q’1 
 

q2 - c
q1 q2 - b q’1 q2

B1 B2



Glue Operators –
 

Incremental Construction

c1 c’1 c2 c’2 

gl
c2 c’2 

gl2

c1 c’1
gl1

2. Flattening 

gl1

1. Decomposition 

gl

C1 C2 Cn




gl2

C2 Cn

C1



Glue Operators –
 

Compositionality

Build correct systems from 
correct components: rules for 
proving global properties from 
properties of 
individual components

We need compositionality results for the preservation of  progress properties such as  
deadlock-freedom and liveness as well as extra-functional properties

 
gl



ci sat Pi implies gl gl~ sat
 

gl(P1

 

, ..,Pn

 

)
gl

c1 cn

~



Glue Operators –
 

Composability

Essential properties of 
components are preserved 
when they are composed 

gl

 
gl



Property stability phenomena are poorly understood. 
We need composability results e.g. non interaction of features in middleware, 
composability of scheduling algorithms, composability of web services

X
sat Pgl

c1 cn
and sat P’gl’

c1 cn

implies sat PP’gl  gl’
c1 cn
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BIP –
 

Basic Concepts

B    E    H    A    V     I     O    R

Interactions (collaboration)
Priorities  (conflict resolution)

Layered component model

Composition operation
 

parameterized
 

by glue
 

IN12, PR12

IN12
PR12

PR1 
IN1 

PR2 
IN2 IN1  IN2

 
 IN12

PR1  PR2
 

 PR12



BIP –
 

Basic Concepts

s

Sender

r1

Receiver1

Interactions: sr1r2r3

Priorities: 

Rendezvous

s r1

r2

Receiver2

r2

r3

Receiver3

r3



BIP –
 

Basic Concepts

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

Priorities: x 
 

xy
 

for x,xyInteractions

Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3



BIP –
 

Basic Concepts

Interactions: s + sr1r2r3

Priorities: x 
 

xy
 

for x,xyInteractions

Atomic
 

Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3



BIP –
 

Basic Concepts

Interactions: s + sr1 + sr1r2 + sr1r2r3

Priorities: x 
 

xy
 

for x,xyInteractions

Causal Chain

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3



BIP –
 

Basic Concepts: Semantics

Interactions            a  i[1,n]  qi - aPi i q’i 
(q1 qn - a

 

(q’1 q’n where q’I =qI if aPi =



 
a set of atomic components {Bi }i=1..n 
where Bi =(Qi , 2Pi, i )



 
a set of interactions 



 
priorities , partial order on interactions

(B1,., Bn)

Priorities
 

q- a

 

q’  
 

(
 

q- b

 

 a  b )
 q- a

 

q’
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Modeling Interactions –
 

Simple Connectors

s + sr2 + sr3 +sr2r3

 A connector is a set of ports

 

that can be involved in an interaction

tick1 tick2 tick3

s r2 r3

tick1tick2tick3



 

Port attributes (trigger , synchron ) are used

 

to model 
rendezvous and broadcast. 



 

An interaction of a connector is a set of ports such that: either it 
contains some trigger or it is maximal.

Express interactions by combining two protocols: rendezvous

 

and broadcast



Modeling Interactions –
 

Hierarchical Connectors

Atomic
 

Broadcast:
a+abc

Causality
 

chain:  a+ab+abc+abcd

b c

bc

c d

c(1+d)

a(1+bc)

a

y=
b(1+y)

b

x=
a(1+x)

a



Modeling Interactions –
 

The Algebra of Connectors

bc
a(1+bc)

a b c

Atomic

 

Broadcast
a’[bc]

b(1+c(1+d))
c(1+d)

a(1+b(1+c(1+d)))

a b c d

Causality

 

chain
a’[b’[c’d]]

a(1+b)(1+c)

a b c

Broadcast
a’bc



Modeling Interactions –
 

The Algebra of Connectors

a b c a b c


+

[a’b]’c a’bc

a ba

a’b’

a b

a’b

a ba

ab’
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Modeling Priorities –
 

Definition

g1 g2

Priority  rule                        Restricted guard g1’
true  p1

 


 
p2

 
g1’

 
= g1 

 


 
g2 

C  p1
 


 

p2
 

g1’
 

= g1 
 

C
 


 

g2 )

p1                 p2

Priority rules



Modeling Priorities –
 

FIFO policy 

PR : t1
 

t2 
 

b1b2       t2<t1 
 

b2b1

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2


start t1 start t2



Modeling Priorities –
 

EDF policy 

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2


PR: D1-t1

 

D2-

 

t2  b2
 

b1      D2-t2< D1-t1  b1
 

b2

start t1 start t2

t1 D1 t2 D2



Modeling Priorities –
 

Composability

PR1
PR2

 PR2
PR1

a 1
 

b b2
 

c

b2
 

c
a 1

 
b

a c
b

c
b

c

a ca c



Modeling Priorities –
 

Composability

PR1PR2 is the least priority containing PR1PR2

Results :
•The operation 

 
is partial, associative and commutative

• PR1(PR2(B))PR2(PR1(B))
• PR1PR2(B) refines PR1PR2(B) refines PR1(PR2(B)) 
• Priorities preserve deadlock-freedom

PR1
PR2 PR1PR2

We take:

=



Modeling Priorities –
 

Mutual Exclusion + FIFO policy

true
 


 

b1
 

f2              true
 


 

b2
 

f1

t1
 

t2 
 

b1
 

b2              t2< t1 
 

b2
 

b1

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2

start t1 start t2



Modeling Priorities –
 

Mutual Exclusion: Example

s1 b1

w2
a1

f1

a2

f2

PR :  b1 
 

f2     b2 
 

{ f1, b1’}     (mutex on R)

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: PRPR’
 

is not defined

PR’: b2’
 

f1      b1’
 


 

{ f2, b2 }
 
(mutex on R’)

s2
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Expressiveness for Component-based Systems

gl3

c1 c2 c3 c4

gl1 gl2

c1 c3 c2 c4

gl1

gl1
gl1

Given two glues G1

 

, G2 

G2 is strongly more expressive than G1

if for any component built by using G1 and C0

there exists an equivalent component built by using G2

 

and C0





 

Different from the usual notion of expressiveness!



 

Based on strict separation between glue and behavior



Expressiveness for Component-based Systems

gl3

c3c1 c2

gl1
c1 c3 c c2

gl1

gl1
gl1

Given two glues G1

 

, G2 

G2

 

is weakly more expressive than G1

if for any component built by using G1

 

and C0

there exists an equivalent component built by using G2

 

and C0

 



 

C
where C

 

is a finite set of coordination behaviors.





Expressiveness for Component-based Systems

BIP IM CCS 

SCCS

CSP

<S

<S

<S

<S W >W >

W >

W >

[Bliudze&Sifakis, Concur 08]

S
Universal

 Glue
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Compositional Verification

Verify global deadlock-freedom

 

of a system 
by separate analysis of the components and of the architecture.

K1 K2
p1 p2 K1 K2

q1 q2

p1 p2

Potential deadlock
D = en(p1)   en(p2) 

 en(q2)   en(q1)

K3

K2K1
p1 p2

q3r3

r1 q2
Potential deadlock
D = en(p1)   en(p2) 

en(q2)   en(q3) 
en(r3)   en(r1) 



Method:
Eliminate potential deadlocks D 
by  computing compositionally 
global  invariants 

 
such that  

D=false 

Compositional Verification: D-Finder

B11

 

□ 1   1   B22

 

□ 22

 


 

II((B11

 

, B2 2 )11

 

22

 

)   11

 

 22

 

  
 

(B11

 

, B2 2 )
 


 

□

11

22



reachable
states



Compositional Verification –
 

D-Finder

x

a

y

b

ab
u

c

d

z

v

w

c

r

d

dc

a

b

b

a

d

c

x

 

 yu
y  xz

z

 

(yu)(vr)
u  xz
v  wz

w

 

 (vr)
r   wz

Minimal solutions define invariants :


 

Component invariants:  xy, zu

 

v, wr


 

Interaction invariants: xu, zyv, zyr , zur, wv



Compositional Verification –
 

D-Finder

Verification
Component 
Deadlock-

 

freedom

generation
D

BIP model

Abstraction and 
II generation

Satisfiability
II 

 

CI 

 

D

DCI

II Deadlock 
confirmation

BIP
simulationYices

Omega

DeadlocksDeadlock-freedom

false-strengthen false-give

 

up
false

generation
CI



Overall BIP Toolset Architecture

BIP Program

compiler

BIP Model 

code
generation

BIP/Linux 
Platform

BIP C++ Code 
centralized/distributed

execution, 
guided/exhaustive 

simulation

D-FINDER

BIP2BIP

BIP MetaModel



Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Compositional Verification –
 

D-Finder

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Example Number
of
Comp

Number
of Ctrl 
States

Number
of Bool

 
Variable

 
s

Numb
of Int

 
Var

Number
Potential 
Deadlocks

Number
Remaining 
Deadlocks

Verification 
Time

Temperature Control (2 
rods)

3 6 0 3 8 3 3s

Temperature Control (4 
rods)

5 10 0 5 32 15 6s

UTOPAR
(40 cars,256 CU)

297 795 40 242 -- 0 3m46s

UTOPAR
(60 cars, 625 CU)

686 1673 60 362 -- 0 25m29s

R/W(10000 readers) 10002 20006 0 1 -- 0 36m10s

Philosophers (13000) 26000 65000 0 0 -- 3 38m48s

Philosophers (10000) 20000 50000 0 0 -- 3 29m30s

Smokers (5000 ) 5001 10007 0 0 -- 0 14m

Gas stations (500 pumps,

 
5000 customers)

5501 21502 0 0 -- 0 18m55s



Compositional Verification –
 

D-Finder



Incremental Verification

1

IN1

 

IN1

IN12

 

IN12


 


 


 


 



IN123

 

IN123


 


 


 


 



IN2

 

IN2

2

IN3

 

IN3

3



System Construction Space

A system is defined as a point of the 3-

 dimensional space
Separation of concerns: any combination of 
coordinates defines a systemBe

ha
vi

or
   

 B
H

IN         Interaction

P
R

   
  P

rio
rit

y 

Architecture

System



System Construction Space –
 

Incrementality

Study 


 

property preservation results by

 elementary model transformations


 

transformations relating classes of 
systems e.g. untimed-timed, 
synchronous-asynchronous

BH
s

INa

asynchronousP
R

a
P

R
s

synchronous

BH
a

INs



System Construction Space –
 

Incrementality

IN1

 

‹
 

IN2 

if for any interaction of 
IN2 contains one in IN1

B

‹
 

INB1<<B2   if 
B1 simulates 
B2 and the 
simulation 
relation is 
total

invariance

dl-freedom

dl
-fr

ee
do

m

in
va

ria
nc

e

<<
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Autonomous Systems 



Functional

 

and Control Level
ModuleModule

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Poster Poster

Functional

 

and Control Level

 

::= Module+

Module

 

::= Service+

 

. Poster

Service

 

::= Service Controller . Service Task

Service Controller ::= Event Triggered

 

Controller |  Cyclic

 

Controller

Cyclic

 

Controller

 

::= Event Triggered

 

Controller

 

. Cyclic

 

Trigger

Service Task

 

::=  Timed

 

Task

 

| Untimed

 

Task

The DALA Robot –
 

Componentization



Ready

Idle

Exec

Abort

trigger

request

interrupt

abort

abort
finish

trigger

interrupt abort requestfinish

Idle: the Service is

 

idle

Ready: checks

 

the possibility

 

for 
starting

 

a new Task

 

of the Service

Exec: execution

 

of the Task

 

of the 
Service

Abort: Service is

 

aborted

The DALA Robot –
 

Event Triggered Controller



Cyclic

 

Controller

 

::= 
Event Triggered

 

Controller . Cyclic

 

Trigger

Exectick
count<p / count++ count == p / count = 0

trigger

trigger

tick
Cyclic

 

Trigger

trigger

interrupt abort requestfinish

Event Triggered

 

Controller

tick

interrupt abort finish request

The Cyclic

 

Trigger starts

 

the Event Triggered

 

Controller every

 

period

 

p

The DALA Robot –
 

Cyclic Controller



Triggered
 

by request

The variable status specifies
 

the previous
 

state of Task
status == 1 : Task

 
successfully

 
executed

status == 0 : Task
 

aborted

interrupt requestabort finish

Exec

Abort

Idle

request

interrupt
abort

finish

read

write

read

write

state

state  
state

state

status

status

 

:= 1

The DALA Robot –
 

Untimed Task



interrupt requestabort finish

Exec

Abort

Idle

request

abort

finish /status:=1

read
write

tick

read

tick
tick

write
count < t2 / count++

t1 ≤

 

count ≤

 

t2 state

state  
state

state

status

/count:=0

interrupt

• Obtained
 

from
 

an Untimed Task
• Its

 
execution

 
time is

 
in [t1,t2]

The DALA Robot –
 

Timed Task



Untimed Event Triggered

 

Service
::= Event Triggered

 

Controller. Untimed Task

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Untimed Taskread

state  
statestatuswrite

Untimed Event 
Triggered

 

Service

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Timed

 

Task

read

state  
statestatuswrite

tick

Timed

 

Event Triggered

 

Service 

intrpt req abort finish

intrpt req abort finish

Cyclic

 

Controller 

Timed

 

Task

read

state  
statestatuswrite

tick

tick

tick

Cyclic

 

Service

Timed

 

Event Triggered

 

Service ::= Event Triggered

 

Controller. Timed

 

Task

Cyclic

 

Service ::= Cyclic

 

Controller . Timed

 

Task

The DALA Robot –
 

Different types of Services



A module composed of 3 services and a poster

Module

tick

offer

Exec
writeoffer

offer write
data

Poster

read

req okabortintrpt
tick read

tick

write

read

Cyclic Service

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

tick

tick

read tick

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

write
write
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Untimed Event 
Triggered Service
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state

state
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write
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write
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tick

status
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 Current status

 Beyond a posteriori verification


 
Component-based Construction


 
The BIP Component Framework


 
Verification at Design Time

 Conclusion



Conclusion



 

Move from a posteriori verification to verification at design time –

 adequate framework for component-based construction



 

Minimalistic approach for verification –

 

focus on state invariance 
and deadlock-freedom



 

Achieve correctness  through


 

Constructivity: compositionality/composability

 

techniques



 

Incrementality: reusing proofs for constituents  



 

Property-preserving transformations



THANK YOU THANK YOU 
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