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Correctness by checking vs.

Correctness by construction

Building systems which are correct with respect to given
requirements is the main challenge for all engineering disciplines

Correctness can be achieved:

= Either by checking that a system or a model of a system
meets given requirements

= Or by construction by using results such as algorithms,
protocols, architectures e.g. token ring protocol, time
triggered architecture

A big difference between Computing Systems Engineering and
disciplines based on Physics is the importance of a posteriori
verification for achieving correctness
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g® Achieving Correctness

Correctness: a system is correct if it meets its requirements

Achieving correctness

< P nstruc’Flon: By Checking
| ) Ithms, arcr]lte(:tljre/\
Physical prototypes Models
e.g. testing (Virtual SW Prototypes)
Ad hoc models Formal models — Verifice

e.g. SystemC simulation




g A posteriori Verification

Should be:

O faithful e.g.
whatever property
Is satisfied for the
model holds for e o them
the real system Verification O complete e.g.

Q generated Method they tightly
automatically characterize the
from system 1 system’s behavior

descriptions YES, NO, DON'TKNOW

O As arule, for infinite state models all non trivial properties are
undecidable e.g. bounded memory
O Intrinsically high complexity for finite state models (state explosion

problem)

Should be:
(O consistent e.g.
there exists some
model satisfying




Beyond a posteriori Verification — ldea

Develop “divide and conquer” verification techniques

O Taking advantage of system structure and its properties e.g. for
particular

= architectures (e.g. client-server, star-like, time triggered)
= programming models (e.g. synchronous, data-flow)

= execution models (e.g. event triggered preempable tasks)

O For specific classes of properties such as deadlock-freedom,
mutual exclusion, timeliness



Beyond a posteriori Verification — Principles

Component-based and faithful construction of models from
heterogeneous components

Tight coupling between design and verification - Achieving
correctness through

= Constructivity: compositionality/composability techniques
» Incrementality: reusing proofs for constituents

» Property-preserving transformations

Minimalistic verification framework

= Focus on state invariants and deadlock-freedom
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Component-based Construction

Build a component C satisfying given requirements f, from
" ¢, a set of atomic components described by their behavior
» g2 ={gl,, ..., gl, ...} a set of glue operators on components

gl12
satisfies f
G| [c; ZRLY:

O Move from single low-level composition operators e.g. automata-
based to families of high-level composition operators e.g. protocols,
controllers

L We need a unified composition paradigm for describing and analyzing
the coordination between components to formulate heterogeneous
system designs in terms of tangible, well-founded and organized

concepts




Glue Operators — Operational Semantics

We use operational semantics to define the meaning of a

composite component — glue operators are “behavior
transformers”

B
B, | B B | w—>
Operational
Semantics

Glue Operators
= build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators

= can be specified by using a family of derivation rules (the
Universal Glue)



Glue Operators — Operational Semantics

A glue operator is a set of derivation rules of the form

Wi~ =29 g 4= G- 8 = frex
(qlﬁ' 9 qn) -a— (q’lr ° q’n)

= LK {1, ..n}, | £ 3, Knl=g

= a=UJ,_, a, isan interaction
= q,=gq; fori ¢l

Notice that, non deterministic choice and sequential
composition are not glue operators

A glue is a set of glue operators




Glue Operators — Operational Semantics: Example

gl is defined by

q,-a—>q’
d;0,-a—>0d;,0q,

Jd,-a—>Qq; (,-Cc—>0),

d,0,-ac—-=q;q,

q,-b—=q;, —0g,-c—

q,:d,-b—>0.0,

acC



Glue Operators — Incremental Construction

1. Decomposition

H
112

¢ |G ¢
2. Flattening
~




g Glue Operators — Compositionality

Build correct systems from

correct components: rules for
proving global properties from
properties of

individual components

C sat Pi implies Vgl Hai

We need compositionality results for the preservation of progress properties such as
deadlock-freedom and liveness as well as extra-functional properties




g Glue Operators — Composability

Essential properties of

components are preserved @
when they are composed

atP  and g/’ [N
G ¢ ¢ ¢
_ @ gl’ ,
implies c AL o sat PAP

Property stability phenomena are poorly understood.
We need composability results e.g. non interaction of features in middleware,
composability of scheduling algorithms, composability of web services
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a  BIP — Basic Concepts

Layered component model

Priorities (conflict resolution
Interactions (collaboration

Y——— on)
: on)
B El  H A V Il O R

Composition operation parameterized by glue IN12, PR12

PR12
IN12

PR1 ® PR2 ® PR12

PR1 PR2
— N1 Ml N2 : INT® IN2 ® IN12
| |




g BIP — Basic Concepts

Priorities: &

Interactions: sr1r2r3

S r1 r2 r3
T Tm j)rz ?3
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Rendezvous



g BIP — Basic Concepts

Priorities: x { xy for x,xyeInteractions

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

S r1 r2 r3
T Tm j)rz ?3
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Broadcast



g BIP — Basic Concepts

Priorities: x { xy for x,xyeInteractions

Interactions: s + sr1r2r3

S r1 r2 r3
T Tm j)rz ?3
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Atomic Broadcast



g BIP — Basic Concepts

Priorities: x { xy for x,xyeInteractions

Interactions: s + sr1 +sr1r2 + sr1r2r3

S r1 r2 r3
T Tﬂ T’Z Tﬁ
S
S O O O
Sender Receiver1 Receiver2 Receiver3

Causal Chain



i BIP — Basic Concepts: Semantics

\
= a set of atomic components {B;}_; |,

where B, =(Q,, 27, —)

= aset of interactions y > 7y7(B1,., Bn)

= priorities &, partial order on interactions

/

Interactions acy A Vie[ll,n] ;- anP;—q’
(d1..- 9.)- @ —,(d'1... ',) Where ', =q,if anP=&

Priorities g-a—=,q A —-(3g-b—>, razb)
q-a—, q
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Modeling Interactions — Simple Connectors

Express interactions by combining two protocols: rendezvous and broadcast
= A connector is a set of ports that can be involved in an interaction

= Port attributes (trigger © , synchron @ ) are used to model
rendezvous and broadcast.

= An interaction of a connector is a set of ports such that: either it
contains some trigger or it is maximal.

tick1tick2tick3
tick1 tick2 tick3
S r2 ra

S + sr2 + sr3 +sr2r3



Modeling Interactions — Hierarchical Connectors

Atomic Broadcast: bc
a+abc

Causality chain: a+ab+abc+abcd

a(1+x) Y=b(1+y)

y=c(1+d)




Modeling Interactions — The Algebra of Connectors

Broadcast
abc

Atomic Broadcast
a’'[bc]

Causality chain
a'[b’[c'd]]

a(1+b)(1+c)
a b C
a(1+bc)
bc
a b C
a(l1+b(1+c(1+d)))
b(1+c(1+d))

c(1+d)



Modeling Interactions — The Algebra of Connectors

a b C a b C
— _/ — _/
' '
[a'b]'c a’bc
~ +
a b a b a b



1 Current status

1 Beyond a posteriori verification
= Component-based Construction
* The BIP Component Framework
= Verification at Design Time

d Conclusion

Ssm—-—<aam<O



gh Modeling Priorities — Definition

Priority rules

p1 p2
g1 g2
Priority rule Restricted guard g1’
true - p1(p2 g1’ =gl A— g2

C - p1{p2 g1’=g1 A—(C A g2)




a8 Modeling Priorities — FIFO policy

PR:t1<t2 > b1(b2  t2<t1 - b2(b1

idle1 idle2 ()
al a2 \

start t1 start t2
C) ready ready2 C)
b1 b2

exec1 <—#—» exec2




- \Modeling Priorities — EDF policy

PR: D1-t1<D2-t2 —» b2(b1  D2-t2< D1-t1 — b1{ b2

idle1 idle2 ()
al a2 \

start t1 start t2
O ready1 ready2 ()
b1 b2
t1 <D1 t2 <D2

exec1 - # > exec2




Modeling Priorities — Composability

+
a (b QD\C b(?c CKC
b v
b(ZC a/sz —ﬁ
a(lb

[\



g® Modeling Priorities — Composability

We take:

— PR
A PR1&PR2

PR1® PR2 is the least priority containing PR1UPR2

Results :
*The operation @ is partial, associative and commutative

 PR1(PR2(B)) #PR2(PR1(B))
* PR1® PR2(B) refines PR1UPR2(B) refines PR1(PR2(B))
* Priorities preserve deadlock-freedom




Modeling Priorities — Mutual Exclusion + FIFO policy

t1<t2 > b1(b2 t2<t1 » b2(b1

true - b1( 2 true —» b2(f1

idle1 idle2 ()
al a2 \

start t1 start t2
C) ready ready2 C)
b1 b2

exec1 exec2



Modeling Priorities — Mutual Exclusion: Example

PR: b1{(f2 b2{({f1,b1} (mutexonR)
PR’ b2’ (f1 b1 ({f2,b2} (mutexonR’)

Risk of deadlock: PR®PR’ is not defined
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Expressiveness for Component-based Systems

Different from the usual notion of expressiveness!

Based on strict separation between glue and behavior

Given two glues G, , G,

G, Is strongly more expressive than G,
if for any component built by using G, and ¢,

there exists an equivalent component built by using G, and ¢,

|12




Expressiveness for Component-based Systems

Given two glues G, , G,

G, Is weakly more expressive than G,
if for any component built by using G, and ¢,

there exists an equivalent component built by using G, and &, ¢
where ¢ is a finite set of coordination behaviors.

|12




Expressiveness for Component-based Systems

SCCS
w7 <s
< <
ccs X s [m X > BIp
=3
Universal
W;é <S Glue
CSP

[Bliudze&Sifakis, Concur 08]
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o Compositional Verification

Verify global deadlock-freedom of a system
by separate analysis of the components and of the architecture.

p1 2
p1 P2 O P

K2 K1 o K2

q1 q2

K1

Potential deadlock
D =en(pl) » —en(p2) »
en(g2) A —en(ql)

1 Potential deadlock

D =en(pl) » —en(p2) A
en(q2) An —en(g3) A

® K3 en(r3) A —en(rl)




Compositional Verification: D-Finder

By[=0¢4 By|=06¢, we ll(y(Bq, By).d01,02) &4 Ao A y= 7

Method:

Eliminate potential deadlocks D
by computing compositionally
global invariants ¢ such that
y~D=false

y(B’], BZ) |: DX

g <

states




- Compositional Verification — D-Finder

c d
b a
b b d d
X = yvu Z =(yvu)A(vvr) w = (vvr)
Yy = XVvZ U= Xvz r = wvz
V= WvZ

Minimal solutions define invariants :
= Component invariants: xvy, zvu vv, wvr
» |nteraction invariants: xvu, zvyvyv, zvyvr , Zvuvr, Wwv



Compositional Verification — D-Finder

BIP model
D
> l
+ Verification * ¢
Omega > Component generation generation
Deadlock- Cl D
freedom
Abstraction and
Il generation l
\ 4 \ 4
Satisfiability Deadlock BIP
Yices | »f IACIAD confirmation simulation
A
#false-strengthen #false-give u
9 false 9 P

v
Deadlock-freedom

Deadlocks




a8 Overall BIP Toolset Architecture

compiler

BIP Model D-FINDER

BIP2BIP

code

generation @@Iﬂﬂﬁej\

¢

centralized/distributed -

execution, _
guided/exhaustive BIP/Linux

simulation Platform




Compositional Verification — D-Finder

Examp|e Number | Number | Number | Numb [ Number Number Verification
of of Ctrl of Bool of Int | Potential Remaining | Time
Comp States | Variable | Var Deadlocks | Deadlocks
S
Temperature Control (2 3 6 0 3 8 3 3s
rods)
Temperature Control (4 5 10 0 5 32 15 6s
rods)
UTOPAR 297 795 40 242 -- 0 3m46s
(40 cars,256 CU)
UTOPAR 686 1673 60 362 -- 0 25m29s
(60 cars, 625 CU)
R/W(10000 readers) 10002 20006 0 1 -- 0 36m10s
Philosophers (13000) 26000 65000 0 0 -- 3 38m48s
Philosophers (10000) 20000 50000 0 0 -- 3 29m30s
Smokers (5000 ) 5001 10007 0 0 -- 0 14m
Gas stations (500 pumps, | 5501 21502 0 0 -- 0 18m55s

5000 customers)

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/




Compositional Verification — D-Finder

Verification time (minutes)

250
240
230
220
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

- bun’;pus'itinr":al verification —+— _

i Incremental compositional verification
Monolithic verification: NUSMY  --- #---

| .' L

:Aﬂd--: i I | 1 1 ] 1 l 1 1 1 | 1 1 | 1 ] l 1 | l 1 |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Gas Station: size = N x (10 pumps and 100 customers)

50



' Incremental Verification

1

X3

e e

X1 X2
X12 = 012 (X1s A2)

X123 = D123 (X120 X3)




System Construction Space

PR  Priority

D S Q Architecture

IN Interaction
, >

Q
S A system is defined as a point of the 3-
= dimensional space
> Separation of concerns: any combination of
Q coordinates defines a system




System Construction Space — Incrementality

PRa

Study
= property preservation results by
elementary model transformations
» transformations relating classes of
systems e.g. untimed-timed,
synchronous-asynchronous




System Construction Space — Incrementality

B1<<B2 if
B1 simulates
B2 and the
simulation
relation is
total

IN1 ¢ IN2

if for any interaction of
IN2 contains one in IN1

IN < dI-freedom ]
® >
Invariance >
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Dedsional Lavel
Procedural , ,  Temporal Planner

1t

Execution Control Level ™
Execufion Controller

P

Fundional Level

Autonomous Systems

Dedisional Level

Procedural Temporal Planner

Execution Control Level ﬁ

Executive - Temporal Executive
xTeT)

Execution Contler

3

Fundtional Level it

Walk Planning

/_ e
HueBlob S:; ) L“—/

/Fr* \ .. GIK

RP2
HRPZ S\
Stereo |0 ) Sl Whole Body  [seits
g Motion

(| PocoLib / Corba

{'
Camera | in

Joint mn (1ms)

Dedisional Level
Procedural Temporal Planner

Executive Temporal Executive

(xTeT)

Execution Control Level @
Execution Contoller

Fundional Level <>
=
NAV | Goal P
. [ /J Communication
DEM [Emv |
/ ' »
PaD  [spoed | —
20 (=)o

‘Smn‘el L‘y ‘ VME Lpislj _.
Aspect jcnsj
o [
Science

. 3 Laser ¥2 N
Camerapn) = AF ;sﬁn/
PanTit| 8 N
Unit os | RFLEX

S




The DALA Robot — Componentization

Controller Controller Controller Controller
Task Task Task Task
Poster Poster
Service Service L Service Service L o0 o
Module Module

Functional and Control Level

Functional and Control Level ::= Module*

Module ::= Service* . Poster
Service ::= Service Controller . Service Task

Service Controller ::= Event Triggered Controller | Cyclic Controller

Cyclic Controller ::= Event Triggered Controller . Cyclic Trigger

Service Task ::= Timed Task | Untimed Task



The DALA Robot — Event Triggered Controller

Idle: the Service is idle

Ready: checks the possibility for
starting a new Task of the Service

Exec: execution of the Task of the
Service

Abort: Service is aborted

trigger

interrupt trigger

e

interrupt abort finish request

finish

T abort

request



B The DALA Robot — Cyclic Controller

Cyclic Controller ::=
Event Triggered Controller . Cyclic Trigger

The Cyclic Trigger starts the Event Triggered Controller every period p

Cyclic Trigger

tick
tick trigger tick
count<p / count++ count==p/count =0

trigger
I

trigger

Event Triggered Controller

interrupt abort finish request

interruptI abort ! finish ! I request



The DALA Robot — Untimed Task

Triggered by request

interrupt abort finish request

read

reques read
finish
_ Exec
status := 1
state ’ state

interrupt

write

The variable status specifies the previous state of Task
status == 1 : Task successfully executed
status == 0 : Task aborted




O The DALA Robot — Timed Task

* Obtained from an Untimed Task
* Its execution time is in [t1,{2]

interrupt abort finish request

request read tick

Icount:=0

finish /status:=1

tick
count < t2 / count++

write state

Q
S



The DALA Robot — Different types of Services

Untimed Event Triggered Service
::= Event Triggered Controller. Untimed Task

Timed Event Triggered Service ::= Event Triggered Controller. Timed Task

Cyclic Service ::= Cyclic Controller . Timed Task

l trigger

Event Triggred
Controller
intrpt req abort finish

intrpt req abort finish

read Untimed Task

- state © ™

Untimed Event
Triggered Service

| trigger

Event Triggred
Controller

intrpt req abort finish

intrpt req abort finish
read

Timed Task tick

- state . ™

[ it state

Timed Event Triggered Service

tick

Cyclic Controller

intrpt req abort finish

intrpt req abort finish
read
- tick ¢ —

Timed Task

i¢k

e state” =

Cyclic Service



A module composed of 3 services and a poster

n The DALA Robot — A Module

read trigger I read trigger l —l‘\'i'cr read
trigger I triggerI tick tick
trigger trigger
tick trigger
Lo — I
intrpt req abort ok intrpt req abort ok :
l l l , trigger
i abort ok
intrpt req abort ok intrpt req abort ok réq_intrpt
=0 )~ read state = )=0 read tick & tick L1 1]
read statel = read | I I I
= write = write State g
write Write state req intrpt abort ok |
i = tick —{ @—
Untimed Event Timed Event read
Triggered Service Triggered Service state
= write state( =
write S
offer [daid offer write statu
offer .
write Cyclic Service
Poster

Module
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a® . Conclusion

O Move from a posteriori verification to verification at design time —
adequate framework for component-based construction

O Minimalistic approach for verification — focus on state invariance
and deadlock-freedom

L Achieve correctness through
= Constructivity: compositionality/composability techniques

= Incrementality: reusing proofs for constituents

= Property-preserving transformations



THANK YOU
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