A Decision Procedure
for Detecting Atomicity Violations
for Communicating Processes with Locks

Nicholas Kidd!, Peter Lammich?, Tayssir Touili?, and Thomas Reps'*

! University of Wisconsin, {kidd,reps}@cs.wisc.edu
2 Westfalische Wilhelms-Universitat Miinster, peter.lammich@uni-muenster.de
3 LIAFA, CNRS & Université Paris Diderot, touili@liafa_jussieu.fr
4 GrammaTech, Inc.

Abstract. We present a new decision procedure for detecting property vi-
olations in pushdown models for concurrent programs that use lock-based
synchronization, where each thread’s lock operations are properly nested
(a la synchronized methods in Java). The technique detects violations
expressed as indezed phase automata (PAs)—a class of non-deterministic
finite automata in which the only loops are self-loops.

Our interest in PAs stems from their ability to capture atomic-set serial-
izability violations. (Atomic-set serializability is a relaxation of atomicity
to only a user-specified set of memory locations.) We implemented the
decision procedure and applied it to detecting atomic-set-serializability
violations in models of concurrent Java programs. Compared with a prior
method based on a semi-decision procedure, not only was the decision
procedure 7.5X faster overall, but the semi-decision procedure timed out
on about 68% of the queries versus 4% for the decision procedure.

1 Introduction

Pushdown systems (PDSs) are a formalism for modeling the interprocedural
control flow of recursive programs. Likewise, multi-PDSs have been used to model
the set of all interleaved executions of a concurrent program with a finite number
of threads [1-7]. This paper presents a decision procedure for multi-PDS model
checking with respect to properties expressed as indezed phase automata (PAs)—a
class of non-deterministic finite automata in which the only loops are self-loops.
The decision procedure handles (i) reentrant locks, (ii) an unbounded number of
context switches, and (iii) an unbounded number of lock acquisitions and releases
by each PDS. The decision procedure is compositional: each PDS is analyzed
independently with respect to the PA, and then a single compatibility check is
performed that ties together the results obtained from the different PDSs.

Our interest in PAs stems from their ability to capture atomic-set serializability
(AS-serializability) violations. AS-serializability was proposed by Vaziri et al. [8]
as a relaxation of the atomicity property [9] to only a user specified set of fields
of an object. (A detailed example is given in §2.) In previous work by some

2 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

of the authors [10], we developed techniques for verifying AS-serializability for
concurrent Java programs. Our tool first abstracts a concurrent Java program into
EML, a modeling language based on multi-PDSs and a finite number of reentrant
locks. The drawback of the approach that we have used to date is that an EML
program is compiled into a communicating pushdown system (CPDS) [4, 5], for
which the required model-checking problem is undecidable. (A semi-decision
procedure is used in [10].)

Kahlon and Gupta [7] explored the boundary between decidability and unde-
cidability for model checking multi-PDSs that synchronize via nested locks. One
of their results is an algorithm to decide if a multi-PDS satisfies an (indexed)
LTL formula that makes use of only atomic propositions, the “next” operator
X, and the “eventually” operator F. In the case of a 2-PDS, the algorithm uses
an automaton-pair M = (A, B) to represent a set of configurations of a 2-PDS,
where an automaton encodes the configurations of a single PDS in the usual
way [11,12]. For a given logical formula, the Kahlon-Gupta algorithm is defined
inductively: from an automaton-pair that satisfies a subformula, they define an
algorithm that computes a new automaton-pair for a larger formula that has one
additional (outermost) temporal operator.

We observed that PAs can be compiled into an LTL formula that uses only
the X and F operators. (App. A presents an algorithm that performs the encod-
ing.) Furthermore, [13] presents a sound and precise technique that uses only
non-reentrant locks to model EML’s reentrant locks. Thus, combining previous
work [10, 13] with the Kahlon-Gupta algorithm provides a decision procedure for
verifying AS-serializability of concurrent Java programs!

(Briefly, the technique for replacing reentrant locks with non-reentrant locks
pushes a special marker onto the stack the first time a lock is acquired, and
records the acquisition in a PDS’s state space. All subsequent lock acquires and
their matching releases do not change the state of the lock or the PDS. Only
when the special marker is seen again is the lock then released. This technique
requires that lock acquisition and releases be properly scoped, which is satisfied
by Java’s synchronized blocks. Consequently, we consider only non-reentrant
locks in the remainder of the paper.)

Unfortunately, [7] erroneously claims that the disjunction operation distributes
across two automaton-pairs. That is, for automaton-pairs My, = (A4, By) and
My = (Ag, By), they claim that the following holds: MV My = (A1V As, B1V Bs).
This is invalid because cross-terms arise when attempting to distribute the
disjunct. For example, if By N By =), then there can be configurations of the
form (a1 € A1,bs € By) that would be accepted by (A1 V Az, By V By) but should
not be in My V Ms.

To handle this issue properly, a corrected algorithm must use a set of
automaton-pairs instead of single automaton-pair to represent a set of con-
figurations of a 2-PDS.® Because the size of the set is exponential in the number
of locks, in the worst case, their algorithm may perform an exponential number
of individual reachability queries to handle one temporal operator. Furthermore,

® We confirmed these observations in e-mail with Kahlon and Gupta [14].

A Decision Procedure 3

once reachability from one automaton-pair has been performed, the resulting
automaton pair must be split into a set so that incompatible configurations are
eliminated. Thus, it is not immediately clear if the (corrected) Kahlon-Gupta
algorithm is amenable to an implementation that would be usable in practice.

This paper presents a new decision procedure for checking properties specified
as PAs on multi-PDSs that synchronize via nested locks.® Unlike the (corrected)
Kahlon-Gupta algorithm, our decision procedure uses only one reachability query
per PDS. The key is to use tuples of lock histories (§5): moving from the lock
histories used by Kahlon and Gupta to tuples-of-lock histories introduces a
mechanism to maintain the correlations between the intermediate configurations.
Hence, our decision procedure is able to make use of only a single compatibility
check over the tuples-of-lock histories that our analysis obtains for each PDS.
The benefit of this approach is shown in the following table, where Procs denotes
the number of processes, £ denotes the number of locks, and |PA| denotes the
number of states in property automaton PA:

PDS State Space Queries
Kahlon-Gupta [7] (corrected) 0(25) O(|PA] - Procs - 2%)
This paper (§6) O([PA| - 2%) Procs

Because our algorithm isolates the exponential cost in the PDS state space, that
cost can often be side-stepped using symbolic techniques, such as BDDs, as
explained in §7.

This paper makes the following contributions:

— We define a decision procedure for multi-PDS model-checking for PAs. The
decision procedure handles (i) reentrant locks, (i) an unbounded number of
context switches, (iii) an unbounded number of lock acquisitions and releases
by each PDS, and (iv) a bounded number of phase transitions.

— The decision procedure is compositional: each PDS is analyzed independently
with respect to the PA, and then a single compatibility check is performed
that ties together the results obtained from the different PDSs.

— We leverage the special form of PAs to give a symbolic implementation that
is more space-efficient than standard BDD-based techniques for PDSs [15].

— We used the decision procedure to detect AS-serializability violations in
automatically-generated models of four programs from the ConTest bench-
mark suite [16], and obtained substantially better performance than a prior
method based on a semi-decision procedure [10].

The rest of the paper is organized as follows: §2 provides motivation. §3 defines
multi-PDSs and PAs. §4 reviews Kahlon and Gupta’s decomposition result.
85 presents lock histories. §6 presents the decision procedure. §7 describes a
symbolic implementation. §8 presents experimental results. §9 describes related
work. Apps. A, B, and C contain additional material; for correctness proofs of
Thms. 2 and 3, see [17].

5 We do not consider multi-PDSs that use wait-notify synchronization because reacha-
bility analysis of multi-PDSs with wait-notify is undecidable [7].

4 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

class Stack { class Client {
Object[] storage = new Object[10]; // @atomic
int item = -1; public synchronized Object get(Stack s){
public static Stack makeStack(){ if(!s.empty()) { return s.pop(); }
return new Stack(); else return null;
}
public synchronized Object pop(){ public static Client makeClient(){
Object res = storagel[item]; return new Client();
storage[item--] = null;
return res; public static void main(String[] args){
} Stack stack = Stack.makeStack();
public synchronized void push(Object o){ stack.push(new Integer(1));
storage[++item] = o; Client clientl = makeClient();
Client client2 = makeClient();
public synchronized boolean empty(){ new Thread("1") { clientl.get(stack); }
return (item == -1); new Thread("2") { client2.get(stack); }
} }
} }
get)
empty () pop()
—_— - - -
10 Abegy (sR1(8))s «vneevn et et (sR1(4)R1(s)R1(i)W1(s)Wh(i))s Aendy
get)
2 Abegz (SRZ (Z))s (SRQ (Z)Rz (S)Rz (Z)Wz (S)WQ(i))s Ae’ﬂdz
empty O popQ)

Fig. 1. Example program and problematic interleaving that violates atomic-set serializ-
ability. R and W denote a read and write access, respectively. ¢ and s denote fields item
and storage, respectively. Abeg and Aend denote the beginning and end, respectively,
of an atomic code block. The subscripts “1” and “2” are thread ids. “(s” and “)s” denote
the acquire and release operations, respectively, of the lock of Stack stack.

2 DMotivating Example

Fig. 1 shows a simple Java implementation of a stack. Class Client is a test
harness that performs concurrent accesses on a single stack. Client.get () uses
the keyword “synchronized” to protect against concurrent calls on the same
Client object. The annotation “@atomic” on Client.get() specifies that the
programmer intends for Client.get () to be executed atomically.

The program’s synchronization actions do not ensure this, however. The root
cause is that the wrong object is used for synchronization: parameter “Stack
s” of Client.get () should have been used, instead of Client.get()’s implicit
this parameter. This mistake permits the interleaved execution shown at the
bottom of Fig. 1, which would result in an exception being thrown.

This is an example of an atomic-set serializability (AS-serializability)—a
relaxation of serializability to only a specified set of shared-memory locations—
violation [8] with respect to s.item and s.storage. AS-serializability violations
can be completely characterized by a set of fourteen problematic access patterns
[8].7 Each problematic pattern is a finite sequence of reads and writes by two

" This result relies on an assumption that programs do not always satisfy: an atomic
code section that writes to one member of a set of correlated locations writes to all
locations in that set (e.g., item and storage of Stack s).

A Decision Procedure 5

threads to one or two shared memory locations. For the program in Fig. 1 and

problematic pattern “Abeg,; Ry (i); Wa(s); Wa(i); R1(s)”, the accesses that match

the pattern are underlined in the interleaving shown at the bottom of Fig. 1.
The fourteen problematic access

patterns can be encoded as an in-

dezed phase automaton (PA). The » A A A A

PA that captures the problematic ac- 8 Abeg, /CK RO QWZ@ szm /Q RO

cesses of Fig. 1 is shown in Fig. 2. Tts (X (&) &)%) @

states—which represent the phases

that the automaton passes through Fig. 2. The PA that accepts the problematic

to accept a string—are chained to- access pattern in the program from Fig. 1. X

gether by phase transitions; each is the set of all actions, and A is X'\ {Aend: }.

state has a self-loop for symbols that

cause the automaton to not change

state. (“Indexed” refers to the fact that the index of the thread performing an

action is included in the label of each transition.)

The PA in Fig. 2 “guesses” when a violation occurs. That is, when it observes
that thread 1 enters an atomic code block, such as get (), the atomic-code-block-
begin action Abeg; causes it either to transition to state ¢o (i.e., to start the next
phase), or to follow the self-loop and remain in g;. This process continues until it
reaches the accepting state. Note that the only transition that allows thread 1
to exit an atomic code block (Aend;) is the self-loop on the initial state. Thus,
incorrect guesses cause the PA in Fig. 2 to become “stuck” in one of the states
q1 - - - g5 and not reach final state gg.

3 Program Model and Property Specifications

Definition 1. A (labeled) pushdown system (PDS) is a tuple P =
(P, Act, I', A, cy), where P is a finite set of control states, Act is a finite set
of actions, I is a finite stack alphabet, and A C (P x I') x Act x (P x I'*) is a
finite set of rules. A rule r € A is denoted by (p,~) <L><p’,u’>. A PDS configu-
ration (p,u) is a control state along with a stack, where p € P and u € I'*, and
co = (po,Yo) is the initial configuration. A defines a transition system over the set
of all configurations. From ¢ = (p,yu), P can make a transition to ¢ = (p’,u'u)
on action a, denoted by c —— ¢, if there exists a rule (p,7) ‘L%p’, u') € A. For

w € Act', ¢ ¢ is defined in the usual way. For a rule r = (p,~y) ——{p/, '),
act(r) denotes r’s action label a.

A multi-PDS consists of a finite number of PDSs Py, ..., P, that synchronize
via a finite set of locks Locks = {ly,...,Is} (i.e., L = |Locks|). The actions Act
of each PDS consist of lock-acquires (“(;”) and releases (“);”) for 1 <4 < L, plus
symbols from X, a finite alphabet of non-parenthesis symbols.

The intention is that each PDS models a thread, and lock-acquire and release
actions serve as synchronization primitives that constrain the behavior of the

6 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

multi-PDS. We assume that locks are acquired and released in a well-nested
fashion; i.e., locks are released in the opposite order in which they are acquired.
The choice of what actions appear in Y’ depends on the intended application.
For verifying AS-serializability (see §2 and §7), X consists of actions to read and
write a shared-memory location m (denoted by R(m) and W (m), respectively),
and to enter and exit an atomic code section (Abeg and Aend, respectively).
Formally, a program model is a tuple IT = (Py,..., Py, Locks, X). A global
configuration g = (c1,...,¢pn,01,...,0r) 18 a tuple consisting of a configuration
for each PDS and a valuation that indicates the owner of each lock: for each
1<i< L, 0,€{Ll,1,...,n} indicates the identity of the PDS that holds lock ;.
The value L signifies that a lock is currently not held by any PDS. The initial
global configuration is go = (¢§,...,cy, L,..., L). A global configuration g =

(c1,¢2,...,Cn,01,...,0r) can make a transition to another global configuration
g =(c,ca,...,¢n,01,...,0) under the following conditions:
a / / /
—Ifeg =¢) and a ¢ {(;,)i}, then ¢’ = (¢}, c2,...,¢n,01,...,0z).
G, oy /
—If g =} and g = (¢1,¢2,...,¢n,01,...,0i—1,L,0i41,...,0z), then ¢’ =
/
(Cl,CQ, ceeyCny01y...,0i-1, 1,01'_,_1, PN ,05).
i /
—If ¢y =} and g = (c1,¢2,...,Cny01,...,0i-1,1,0i41,...,0z), then ¢’ =
/
(017027 ceo3Cny 015 -+,0i—1, J—7O'L+1u s 70[:)'
For 1 < j < n, a global configuration (c1,...,¢j,...,¢n,01,...,02) can make
a transition to a global configuration (ci,...,c},...,¢,,01,...,0;) in a similar
fashion.

A program property is specified as an indexed phase automaton, defined as
follows:

Definition 2. An indexed phase automaton (PA) is a tuple (Q,Id, X, 0),
where Q is a finite, totally ordered set of states {q1,...,qq|}, Id is a finite set of
thread identifiers, X is a finite alphabet, and 6 C Q x Id x X' X Q is a transition
relation. The transition relation § is restricted to respect the order on states: for
each transition (qg,i,a,qy) € 0, either y =x or y=x + 1. We call a transition
of the form (qs,1,a,q:+1) a phase transition. The initial state is q1, and the
final state is q|q)-

The restriction on § in Defn. 2 ensures that the only loops in a PA are “self-
loops” on states. We assume that there is only one phase transition of the form
(quy%,a,quy1) € 0, 0 < & < |Q]- (A PA that has multiple such transitions can
be factored into a set of PAs, each of which satisfy this property.) Finally, we
only consider PAs that recognize a non-empty languauge, which means that a PA
must have exactly (|Q| — 1) phase transitions.

For the rest of the paper we consider 2-PDSs, and fix IT = (Pq, Ps, Locks, X)
and A = (Q, Id, X, §); however, the techniques extend easily to any finite number
of PDSs, and our implementation handles multiple PDSs (see App. B). Given
II and A, the model-checking problem of interest is to determine if there is an
execution that begins at the initial global configuration gog that drives A to its
accepting state.

A Decision Procedure 7

4 Path Incompatibility

The decision procedure analyzes the PDSs of IT independently, and then checks
if two runs exist that can be performed in interleaved parallel fashion under the
lock-constrained transitions of IT. To do this, it makes use of a decomposition
result, due to Kahlon and Gupta [7, Thm. 1], which we now review.

Suppose that PDS Py, for k € {1,2}, when started in (single-PDS) config-
uration ¢;, and executed alone, is able to reach configuration ¢}, using the rule
sequence py. Let LocksHeld(Py, (b1, ba, 01,...,0r)) denote {l; | 0; = k}; i.e., the
set of locks held by PDS Py, at global configuration (by, b2, 01,...,0z).

Along a rule sequence py and for an initially-held lock I; and finally-held lock
lf, we say that the initial release of [; is the first release of I;, and that the final
acquisition of Iy is the last acquisition of If. Note that for execution to proceed
along pi, P must hold an initial set of locks at ¢, that is a superset of the set of
initial releases along pg; i.e., not all initially-held locks need be released. Similarly,
Py’s final set of locks at ¢, must be a superset of the set of final acquisitions
along p.

Theorem 1. (Decomposition Theorem [7].) Suppose that PDS Py, when
started in configuration ¢, and executed alone, is able to reach configuration
¢, using the rule sequence py. For II = (P, P2, Locks, X), there does not exist
an interleaving of paths p1 and py from global configuration (c1,c¢2,01,...,0r)
to global configuration (cy,ch,0},...,0,) iff one or more of the following five
conditions hold:

1. LocksHeld(Py, (¢1,c2,01,...,0r)) N LocksHeld(Ps, (c1,c2,01,...,02)) £

2. LocksHeld(P1, (¢}, 5,01, ...,0)) N LocksHeld(Pa, (¢}, cy, 0}, ...,0)) #0

3. In p1, P1 releases lock l; before it initially releases lock lj, and in pa, Po
releases ; before it initially releases lock I;.

4. In p1, P1 acquires lock l; after its final acquisition of lock l;, and in pa, Po
acquires lock l; after its final acquisition of lock I;,

5. (a) In p1, P1 acquires or uses a lock that is held by Py throughout pa, or
(b) in pa, Pa acquires or uses a lock that is held by Py throughout p;.

Intuitively, items 3 and 4 capture cycles in the dependence graph of lock
operations. That is, when either item is satisfied, a deadlock must occur for all
possible interleavings of p; and ps, and thus no such interleaving can exist. The
remaining items model standard lock semantics: only one thread may hold a lock
at a given time.

5 Extracting Information from PDS Rule Sequences

To employ Thm. 1, we now develop methods to extract relevant information
from a rule sequence py for PDS Pg. As in many program-analysis problems that
involve matched operations [18]—in our case, lock-acquire and lock-release—it is
useful to consider semi-Dyck languages [19]: languages of matched parentheses

8 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

in which each parenthesis symbol is one-sided. That is, the symbols “(” and “)”
match in the string “()”, but do not match in “)(”.%

Let X be a finite alphabet of non-parenthesis symbols; The semi-Dyck language
of well-balanced parentheses over X U {(;,); | 1 <i < L} can be defined by the
following context-free grammar, where e denotes a member of X

matched — € | e matched | (; matched); matched [for1<i <[]

Because we are interested in paths that can begin and end while holding a set of
locks, we define the following partially-matched parenthesis languages:

unbalR — € | unbalR matched); unballL — € | (; matched unbalL
The language of words that are possibly unbalanced on each end is defined by
suffizPrefic — wunbalR matched unbalL

Example 1. Consider the following suffixrPrefix string, in which the positions
between symbols are marked A—W. Its unbalR, matched, and unbalL components
are the substrings A-N, N-P, and P-W, respectively.

D122)3 (2 (4 (5)5)a (6)6)2)7 (6 Jo (4 (2)2 (2 (7)7 (s

NENETANTANT AN AN TN TAN N TN N AN '~

ABCDEFGHIJTKLMNOPQRSTUVW

Let wy € L(suffixPrefix) be the word formed by concatenating the action
symbols of the rule sequence pi. One can see that to use Thm. 1, we merely
need to extract the relevant information from wy. That is, items 3 and 4 require
extracting (or recording) information from the unbalR and unbalL portions of wy,
respectively; item 5 requires extracting information from the matched portion of
wg; and items 1 and 2 require extracting information from the initial and final
parse configurations of wy.

The information is obtained using acquisition histories (AH) and release
histories (RH) for locks, as well as pg’s release set (R), use set (U), acquisition
set (A), and held-throughout set (HT).

— The acquisition history (AH) [7] for a finally-held lock ; is the union of the
set {l;} with the set of locks that are acquired (or acquired and released)
after the final acquisition of I;.°

— The release history (RH) [7] of an initially-held lock I; is the union of the set
{l;} with the set of locks that are released (or acquired and released) before
the initial release of [;.

— The release set (R) is the set of initially-released locks.

— The use set (U) is the set of locks that form the matched part of wy.

— The acquisition set (A) is the set of finally-acquired locks.

— The held-throughout set (HT) is the set of initially-held locks that are not
released.

8 The language of interest is in fact regular because the locks are non-reentrant.
However, the semi-Dyck formulation provides insight into how one extracts the
relevant information from a rule sequence.

9 This is a slight variation from [7]; we include /; in the acquisition history of lock I;.

A Decision Procedure 9

A lock history is a six-tuple (R, @,U,m,/—\, HT), where R, U, A, and HT
are the sets defined above, and AH (Iir—l) is a tuple of £ acquisition (release)
histories, one for each lock I;, 1 <4 < L. Let p = [r1,...,7,] be a rule sequence
that drives a PDS from some starting configuration to an ending configuration,
and let Z be the set of locks held at the beginning of p. We define an abstraction
function 7n(p,Z) from rule sequences and initially-held locks to lock histories;
n(p,Z) uses an auxiliary function, post, which tracks R, F\TI\-I, U, KI\-I, A, and HT
for each successively longer prefix.

n([,Z) = (0,0°,0,0%,0,7)
n([ry,...,ra],Z) = post(n([r1,...,rn-1],Z),act(rn)), where

post((R, RH, U, AH, A, HT), a) =

(R,RH, U, AH, A, HT) ifad{()}
(R,RH, U, AH’, AU {I;},HT) if a = (;
. {1} ifj =i
where AH [j] = @/\ ifj#diand l; ¢ A
AH[jJU{li} ifj#iandl; €A
(R,RH, U U {I;}, AH", A\ {l;}, HT\{l;}) if a=); and l; € A
ifj=i
where AH b= AH[]] otherwise
(RU{L:},RH’, U, AH, A, HT\{l:}) ifa=);and l; ¢ A
{L,L}UUUR ifj=1
where RH [1= {RH[] otherwise

Ezxample 2. Suppose that p is a rule sequence whose labels spell out the string
from Example 1, and Z = {1,3,7,9}. Then 7n(p,Z) returns the following lock
history (only lock indices are written):

({17377}7 <{1}, ®7 {17273}’ 07 ®7 ®7 {172737475767 7}7 ®7 ®>7

{6}, O, {2,7,8}0, {2,4,7,8}4,0,0,0, {8}, 0), {2,4,8}, {9}).

Note: R and A are included above only for clarity; they can be recovered from
RH and AH, as follows: R = {1] RH[] # (0} and A = {i | AH[] # 0}. In addition,

from LH = (R, RH,U,AH, A, HT), it is easy to see that the set Z of initially-held
locks is equal to (R U HT), and the set of finally-held locks is equal to (A UHT).

Definition 3. Lock histories LH, = (Ry, RHy, Uy, AHy, A1, HT1) and LHy =
(Ry, RHy, Us, AHy, Ay, HT3) are compatible, denoted by Compatible(LHy, LHs),
iff all of the following five conditions hold:
1L.(RRUHT) N (RRUHT2) =0 2.(A1UHT1)N (AQUHTQ) —0)
3. Ai,j . l; € AFh[i| A l; € AHblj] 4. Bi,j . 1; € RFh[i] Al € RHaj]
5(AUU)NHT: =0A(A2UUL)NHT, =10

Each conjunct verifies the absence of the corresponding incompatibility condition
from Thm. 1: conditions 1 and 2 verify that the initially-held and finally-held
locks of p; and po are disjoint, respectively; conditions 3 and 4 verify the absence
of cycles in the acquisition and release histories, respectively; and condition 5
verifies that p; does not use a lock that is held throughout in ps, and vice versa.

10 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

AbegI R, @ _> W, () — w,@ _> //’\ R () —pp
q, q q, 9 96

:fAbegI R0 _>} /AL W0 el W0 > AR
: _ : ;]

..

Fig. 3. II: bad interleaving of Fig. 2, showing only the actions that cause a phase
transition. 1: the same interleaving from Thread 1’s point of view. The dashed boxes
show where Thread 1 guesses that Thread 2 causes a phase transition. 2: the same but
from Thread 2’s point of view and with the appropriate guesses.

6 The Decision Procedure

As noted in §4, the decision procedure analyzes the PDSs independently. This
decoupling of the PDSs has two consequences.

First, when P; and A are considered together, independently of Ps, they
cannot directly “observe” the actions of Ps that cause A to take certain phase
transitions. Thus, P; must guess when Ps causes a phase transition, and vice
versa for Po. An example of the guessing is shown in Fig. 3. The interleaving
labeled “IT” is the bad interleaving from Fig. 2, but focuses on only the PDS
actions that cause phase transitions. The interleaving labeled “1” shows, via the
dashed boxes, where P; guesses that Py caused a phase transition. Similarly, the
interleaving labeled “2” shows the guesses that P, must make.

Second, a post-processing step must be performed to ensure that only those
behaviors that are consistent with the lock-constrained behaviors of II are
considered. For example, if P; guesses that P, performs the Wa(s) action to
make the PA transition from state g3 to state g4 (the dashed box for interleaving “1”
in Fig. 3) while it is still executing the empty () method (see Fig. 2), the behavior
is inconsistent with the semantics of I7. This is because both threads would hold
the lock associated with the shared “Stack s” object. The post-processing step
ensures that such behaviors are not allowed.

6.1 Combining a PDS with a PA

We now present a construction that combines a PDS P with a PA A to form a
new PDS P4. The resulting PDS P4 is an unlabeled PDS. £H denotes the set
of all lock histories; LH = LH'9! denotes the set of all tuples of lock histories of
length Q. We denote a typical lock history by LH, and a typical tuple of lock
histories by LH. LH[j] denotes the i component of LH.

The construction uses tuples of lock histories because when a phase transition
occurs along a path in PyA’s transition system, it is necessary to remember the

A Decision Procedure 11

lock history of the path taken during the current phase. A tuple maintains the
sequence of lock histories for one or more paths taken through a sequence of
phases. These are used later to check whether some scheduling of an execution of
IT can actually perform all of the required phase transitions.

Our construction makes use of the phase-transition function on LHs defined
as follows: ptrans((R, RH, U, AH, A, HT)) = (0,0%,0,0%,0, AUHT). This function
is used to encode the start of a new phase: the set of initially-held locks is the
set of locks held at the end of the previous phase.

Let P; = (P;, Act;, I, As, (po,70)) be a PDS, Locks be a set of locks of size
L, A= (Q,1Id, X, 0) be a PA, and LH be a tuple of lock histories of length |Q)|.
We define the PDS PA = (PA, 0, I, AL, (pgt, o)), where PA C Py x Q x LH.
The initial control state is pf)“ = (po, q1, m@), where m@ is the lock-history tuple
(0,0¢,0,0¢,0,0) 9. Each rule r € A2 performs only a single update to the tuple
Er-l, at an index x determined by a transition in §. The update is denoted by
m[x — e|, where e evaluates to an LH. Two kinds of rules are introduced to
account for whether a transition in § is a phase transition or not:

1. Non-phase Transitions: [H = I:Fl[x — post(lfltl[x]7 a)).

,7) L(p’, u) € A; and transition (g, 4, a, q;) € J, there
is arule = ((p. g2, L), 7) (0,0, LH)) € A7
(b) For each rule (p,7) ——(p,u) € Ay, a € {(x,)x}, and each ¢, € Q, there
is a rule r = ((p, o, LH),7) (¢, 42, [H), u) € AA,
2. Phase Transitions: LH = m[(x +1)— ptrans(m[x})].

(a) For each rule

(a) For each rule (p,~) L(p’,u) € A; and transition (gg,i,a,qgz+1) € 0,

there is a rule r = {(p, gz, IfFI),*y) —{(p', Gz+1, I_/I:II),u> c AL
(b) For each transition (¢.,Jj,a,q.+1) € 6, j # i, and for each p € P; and

v € I, there is a rule r = ((p, ¢, IjFI),'y> —((p, Gzt1, IjFI/),fy> € AA.

Rules defined by item 1(a) make sure that P/ is constrained to follow the self-loops
on PA state g,. Rules defined by item 1(b) allow for P to perform lock acquires
and releases. Recall that the language of a PA is only over the non-parenthesis
alphabet X', and does not constrain the locking behavior. Consequently, a phase
transition cannot occur when PZ»A is acquiring or releasing a lock. Rules defined
by item 2(a) handle phase transitions caused by 7){4. Finally, rules defined by
item 2(b) implement P;'’s guessing that another PDS 73]“-4, j # i, causes a phase
transition, in which case P{“ has to move to the next phase, as well.

6.2 Checking Path Compatibility

For a generated PDS 73,;47 we are interested in the set of paths that begin in
the initial configuration (pg!, o) and drive A to its final state q)q|- Each such

12 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

input : A 2-PDS II = (P, P2, Locks, X) and a PA A.
output: true if IT can drive A to its final state.

1 let Aéost* — post;;f; let .A?mst* — post;‘,A;

2 foreach p; € Py, [I\-Il s.t. Jur € IT : {(p1, 910/ LH1) ui) € L(Apost*) do

3 foreach ps € Py, LHs s.t. Jus € I3 ((p2, 0 LH2) uz) € L(.Apoét*) do

4 L if Compatible(LH, LH,) then

5 L return true;

6 return false;

Algorithm 1: The decision procedure. The two tests of the form “Jux € I} :
((pr> 919 LHk) uk> € L(Apom)” can be performed by finding any path in A’;ost* from
state (px, q|q|, LHk) to the final state.

path ends in some configuration <(pk, 90| LHk) u), where u € I'*. Let p; and
p2 be such paths from 73’4 and 732 , respectively. To determine if there exists a
compatible scheduhng for p1 & and p3, we use Thm. 1 on each component of the
lock-history tuples LH1 and LH2 from the ending configurations of p; and ps:

— Q]
Compatible(LHy, LHg) <= /\ Compatlble(LH (], LH2[D-

Due to recursion, P! and Ps! could each have an infinite number of such paths.
However, each path is abstracted as a tuple of lock histories EFI, and there are
only a finite number of tuples in LH; thus, we only have to check a finite number
of (I:Fh, I:F|2) pairs. For each PDS P4 = (P4, Act, I, A, ci'), we can identify
the set of relevant LH tuples by computing the set of all configurations that
are reachable starting from the initial configuration, posty, (cg'), using standard
automata-based PDS techniques [11,12]. (Because the 1n1t1a1 configuration is
defined by the PDS P4, henceforth, we merely write post},..) That is, because
the construction of P4 removed all labels, we can create a P-(multi)-automaton
[11] Apose- that accepts exactly the set of configurations posty, 4

The algorithm to check whether I can drive A to its final state is given in
Alg. 1.

Theorem 2. For multi-PDS IT = (P1,Pa, Locks, X)) and PA A, there exists an
execution of II that drives A to its final state iff Alg. 1 returns true.

7 A Symbolic Implementation

Alg. 1 solves the multi-PDS model-checking problem for PAs. However, an imple-
mentation based on symbolic techniques is required because it would be infeasible
to perform the final explicit enumeration step specified in Alg. 1, lines 2-5. One
possibility is to use Schwoon’s BDD-based PDS techniques [15]; these represent
the transitions of a PDS’s control-state from one configuration to another as a
relation, using BDDs. This approach would work with relations over @ x LH,
which requires using |Q|?|LH|?> BDD variables, where |LH| = 2L + 2£2.

A Decision Procedure 13

This section describes a more economical encoding that needs only (|@Q|+1)|LH|
BDD variables. Our approach leverages the fact that when a property is specified
with a phase automaton, once a PDS makes a phase transition from ¢, to g1,
the first 2 entries in LH tuples are no longer subject to change. In this situation,
Schwoon’s encoding contains redundant information; our technique eliminates
this redundancy.

We explain the more economical approach by defining a suitable weight
domain for use with a weighted PDS (WPDS) [4,20]. A WPDS W = (P, S, f)
isa PDS P = (P, Act, I, A, ¢g) augmented with a bounded idempotent semiring
S = (D,®,®,1,0) (see App. C), and a function f : A — D that assigns a
semiring element d € D to each rule r € A. When working with WPDSs, the
result of a post* computation is a weighted automaton. For the purposes of this
paper, we view the weighted automaton Ap,.+ = post}, as a function from a
regular set of configurations C' to the sum-over-all-paths from ¢y to all ¢ € C;
ie, Apost-(C) = D{v | Fec € C: g 2,0 = f(r1) ® ... f(rn)}, where
r1...7ry 18 a sequence of rules that transforms ¢y into c. For efficient algorithms
for computing both Ap,s+ and Agese- (C), see [4, 20].

Definition 4. Let S be a finite set; let A C S™t! and B C SP*! be relations of
arity m+ 1 and p + 1, respectively. The generalized relational composition
of A and B, denoted by “A ; B”, is the following subset of S™P:

A; B:{<a1,...,am,b2,...7bp+1> | (al,...,am,x> EA/\<£L',b2,...,bp+1> GB}

Definition 5. Let S be a finite set, and 6 be the maximum number of phases of
interest. The set of all f-term formal power series over z, with relation-
valued coefficients of different arities, is
RFPS[S, 0] = {X0) iz’ | ¢; € S1H2).

A monomial is written as c;z (all other coefficients are understood to be ());
a monomial cyz’ denotes a constant. The multi-arity relational weight
domain over S and 0 is defined by (RFPS[S, 0], X, +, Id,), where x is poly-
nomial multiplication in which generalized relational composition and U are
used to multiply and add coefficients, respectively, and terms cjzj for j >0 are
dropped; + is polynomial addition using U to add coefficients; Id is the constant
{(s,8) | s € S}2%; and 0 is the constant (2°.

We now define the WPDS W, = (P}V, S, f) that results from taking the prod-
uct of PDS P; = (P;, Act;, I, Ay, (po, Yo0)) and phase automaton A = (Q, Id, X, ¢).
The construction is similar to that in §6.1, i.e., a cross product is performed that
pairs the control states of P; with the state space of A. The difference is that the
lock-history tuples are removed from the control state, and instead are modeled
by S, the multi-arity relational weight domain over the finite set LH and 6 = |Q)|.
We define P} = (P, x Q,0, I;, AY, {(po, q1),70)), where A?Y and f are defined
as follows:

1. Non-phase Transitions: f(r) = {(LHy,LHy) | LHy = post(LH1, a)}2°.

14 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

input : A 2-PDS (P1, P2, Locks, X) and a PA A.

output: true if there is an execution that drives A to the accepting state.

let Ajloost* — postyy, ; let Afmst* — postyy,;

let c/g 1297 = AL ({{(p1, q10)),w) | p1r € PL Au € IT});

let C\QQHZ‘QHA: A i ({<(p27Q|Q\)/a\u> | p2 € P Au € I3}); L

return 3(LHo, LH\) € cq|_y, (LHo, LH2) € ¢fg|_, : Compatible(LHy, LH,);
Algorithm 2: The symbolic decision procedure.

AW N =

(a) For each rule (p,v) L(p',u) € A;, a € {(x,)r}, and for each ¢, € Q,
there is a rule 7 = ((p, ¢z),7) —{(p', qz),u) € AV.
(b) For each rule (p,v) i><p’,u> € A; and transition (g, 1, a,q,) € J, there
is a rule r = ((p, ¢z),7) —((¥', ¢x),u) € AP,
2. Phase Transitions: f(r) = {(LH,LH, ptrans(LH)) | LH € £H}2".

(a) For each rule (p,7) —(p/,u) € A; and transition (qg,4,a,¢e41) € 0,
there is a rule r = ((p,), 7) = (', gzt1),u) € A,

(b) For each transition (¢, 7j,a,q.+1) € 6, j # i, and for each p € P; and
v € I, there is a rule r = ((p, ¢z),7) ——{(P, Gat1),7) € AW.

A multi-arity relational weight domain is parameterized by the quantity
f—the maximum number of phases of interest—which we have picked to be |Q)|.
We must argue that weight operations performed during model checking do not
cause this threshold to be exceeded. For configuration ((p, ¢..), u) to be reachable
from the initial configuration ((po,q1),v0) of some WPDS W;, PA A must make
a sequence of transitions from states q; to ¢, which means that A goes through
exactly z — 1 phase transitions. Each phase transition multiplies by a weight of
the form c;2'; hence, the weight returned by Apose- ({{(p, ¢z),u)}) is a monomial
of the form c,_12%*~!. The maximum number of phases in a PA is |Q|, and thus
the highest-power monomial that arises is of the form C‘Q‘_lz@'*l. (Moreover,
during postyy, as computed by the algorithm from [20], only monomial-valued
weights ever arise.)

Alg. 2 states the algorithm for solving the multi-PDS model-checking problem
for PAs. Note that the final step of Alg. 2 can be performed with a single BDD
operation.

Theorem 3. For multi-PDS IT = (P1, P2, Locks, X) and PA A, there exists an
execution of II that drives A to the accepting state iff Alg. 2 returns true.

8 Experiments

Our experiment concerned detecting AS-serializability violations (or proving their
absence) in models of concurrent Java programs. The experiment was designed to
compare the performance of Alg. 2 against that of the communicating-pushdown
system (CPDS) semi-decision procedure from [10]. Alg. 2 was implemented using
the WALI WPDS library [21] (the multi-arity relational weight domain is included

A Decision Procedure 15

in the WALI release 3.0). The weight domain uses the BuDDy BDD library [22].
All experiments were run on a dual-core 3 GHz Pentium Xeon processor with 4
GB of memory.

We analyzed four Java programs from the ConTest benchmark suite [16]. Our
tool requires a few source annotations to be added to each program. We have
annotated eleven on the twenty-seven programs that ConTest documentation
identifies as having “non-atomic” bugs. Our front-end currently handles eight of
the eleven (the AST rewriting of [10] currently does not support certain Java
constructs). Finally, after abstraction, four of the eight EML models did not use
locks, so we did not analyze them further. The four that we used in our study
are SoftwareVerificationHW, BugTester, BuggyProgram, and shop.

For each program, the front-end of the EMPIRE tool [10] was used to create
an EML program. An EML program has a set of shared-memory locations,
SMem, & set of locks, Siocks, and a set of EML processes, Sprocs. Five of the
fourteen PAs used for detecting AS-serializability violations check behaviors that
involve a single shared-memory location; the other nine check behaviors that
involve a pair of shared-memory locations. For each of the five PAs that involve
a single shared location, we ran one query for each m € Syem. For each of the
nine PAs that involve a pair of shared locations, we ran one query for each
(m1,m2) € Smem X SMmem- In total, each tool ran 2,147 queries. Fig. 4 shows
log-log scatter-plots of the execution times, classified into the 43 queries for which
Alg. 2 reported an AS-serializability violation (left-hand graph), and the 2,095
queries for which Alg. 2 verified correctness (right-hand graph).

Although the CPDS-based method is a semi-decision procedure, it is capable
of both (i) verifying correctness, and (ii) finding AS-serializability violations
[10]. (The third possibility is that it times out.) Comparing the total time
to run all queries, Alg. 2 ran 7.5X faster
(136,235 seconds versus 17,728 seconds).

The CPDS-based method ran faster than Query Category

Alg. 2 on some queries, although never CPDS succeeded |CPDS timed out
more than about 8X faster; in contrast, Alg. 2 succeeded|Alg. 2 succeeded
Alg. 2 was more than two orders of mag- ||Impl. || (685 of 2,147) | (1,453 of 2,147)
nitude faster on some queries. Moreover, ([cpPDS 6,006 130,229

the CPDS-based method timed out on |[Alg. 2 2,428 15,310

about 68% of the queries—both for the
ones for which Alg. 2 reported an AS-
serializability violation (29 timeouts out
of 43 queries), as well as the ones for
which Alg. 2 verified correctness (1,425
timeouts out of 2,095 queries). Alg. 2 ex-
ceeded the 200-second timeout threshold
on nine queries. The CPDS-based method also timed out on those queries. When
rerun with no timeout threshold, Alg. 2 solved each of the nine queries in 205231
seconds.

Fig. 5. Total time (in seconds) for exam-
ples classified according to whether CPDS
succeeded or timed out.

16 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps
1 1 1 1 1 1 1 1 1
ong AS-Violation No AS-Violation
//g /E
7/ 7/
7/ 7/
276 4 7/ -
7 7 l
7/
! // °
7/ 7/
27 — B " // § ! // |-
= sm B ° 3
%\ 7/ B //
7/ . 7/
2 o L
S B = e e
3 / 4
N s/ o . L
=) s / []
< s P4 8 o
) B a%°l
on_p e L o L
7/ 7/
7
7 7 E
274 e e 3 o
7/ 7/ - O
7/ o0 Ol
// OoaED OW
7 @ o o
T T T T T T T T T T T T
24 22 20 22 24 26 28 24 22 20 22 24 26 28

CPDS (seconds)

Fig. 4. Log-log scatter-plots of the execution times of Alg. 2 (y-axis) versus the CPDS
semi-decision procedure [10] (x-axis). The dashed lines denote equal running times;
points below and to the right of the dashed lines are runs for which Alg. 2 was faster.
The timeout threshold was 200 seconds; the minimal reported time is .25 seconds.
The vertical bands near the right-hand axes represent queries for which the CPDS
semi-decision procedure timed out. (The horizontal banding is due to the fact that, for
a given program, Alg. 2 often has similar performance for many queries.)

Fig. 5 partitions the examples according to whether CPDS succeeded or timed
out. The 1,453 examples on which CPDS timed out (col. 3 of Fig. 5) might be
said to represent “harder” examples. Alg. 2 required 15,310 seconds for these,
which is about 3X more than the 1,453/685 x 2,428 = 5,150 seconds expected
if the queries in the two categories were of equal difficulty for Alg. 2. Roughly
speaking, therefore, the data supports the conclusion that what is harder for
CPDS is also harder for Alg. 2.

9 Related Work

The present paper introduces a different technique than that used by Kahlon
and Gupta [7]. To decide the model-checking problem for PAs (as well as certain
generalizations not discussed here), one needs to check pairwise reachability of
multiple global configurations in succession. Our algorithm uses WPDS weights
that are sets of lock-history tuples, whereas Kahlon and Gupta use sets of pairs
of configuration automata.

There are similarities between the kind of splitting step needed by Qadeer
and Rehof to enumerate states at a context switch [1] in context-bounded
model checking and the splitting step on sets of automaton-pairs needed in the
algorithm of Kahlon and Gupta [7] to enumerate compatible configuration pairs
[14]. Kahlon and Gupta’s algorithm performs a succession of pre* queries; after
each one, it splits the resulting set of automaton-pairs to enforce the invariant

A Decision Procedure 17

that succeeding queries are only applied to compatible configuration pairs. In
contrast, our algorithm (i) analyzes each PDS independently using one post*
query per PDS, and then (ii) ties together the answers obtained from the different
PDSs by performing a single compatibility check on the sets of lock-history tuples
that result. Because our algorithm does not need a splitting step on intermediate
results, it avoids enumerating compatible configuration pairs, thereby enabling
BDD-based symbolic representations to be used throughout.

The Kahlon-Gupta decision procedure has not been implemented [14], so
a direct performance comparison was not possible. It is left for future work to
determine whether our approach can be applied to the decidable sub-logics of
LTL identified in [7].

Our approach of using sets of tuples is similar in spirit to the use of matrix
[2] and tuple [3] representations to address context-bounded model checking [1].
In this paper, we bound the number of phases, but permit an unbounded number
of context switches and an unbounded number of lock acquisitions and releases
by each PDS. The decision procedure is able to explore the entire state space of
the model; thus, our algorithm is able to verify properties of multi-PDSs instead
of just performing bug detection.

Dynamic pushdown networks (DPNs) [23] extend parallel PDSs with the
ability to create threads dynamically. Lammich et al. [24] present a generalization
of acquisition histories to DPNs with well-nested locks. Their algorithm uses
chained pre* queries, an explicit encoding of acquisition histories in the state
space, and is not implemented.

References

1. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS. (2005)
2. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent
programs under a context bound. In: TACAS. (2008)
3. Lal, A.) Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. In: CAV. (2008)
4. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL. (2003)
5. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing C programs with recursive calls. In: TACAS. (2006)
6. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via
locks. In: CAV. (2005)
7. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: POPL.
(2007)
8. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. In: POPL. (2006)
9. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI. (2003)
10. Kidd, N., Reps, T., Dolby, J., Vaziri, M.: Finding concurrency-related bugs using
random isolation. In: VMCAL (2009)
11. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model checking. In: CONCUR. (1997)

18

12.
13.
14.

15.
16.

17.

18.
19.

20.

21.

22.
23.

24.

Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

Finkel, A., B.Willems, Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci. 9 (1997)

Kidd, N., Lal, A., Reps, T.: Language strength reduction. In: SAS. (2008)
Kahlon, V., Gupta, A.: Personal communication (January 2009)

Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TUM (2002)
Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Towards a framework and a
benchmark for testing tools for multi-threaded programs. Conc. and Comp.: Prac.
and Exp. 19(3) (2007)

Kidd, N., Lammich, P., Reps, T., Touili, T.: A decision procedure
for detecting atomicity violations for communicating processes with locks.
Technical Report 1649, Univ. of Wisconsin (Jan. 2009) Available at
http://www.cs.wisc.edu/wpis/abstracts/tr1649.abs.html.

Reps, T.: Program analysis via graph reachability. Inf. and Softw. Tech. 40 (1998)
Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Reading,
MA (1978)

Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP 58 (2005)

Kidd, N., Lal, A., Reps, T.: WALi: The Weighted Automaton Library (Feb. 2009)
http://www.cs.wisc.edu/wpis/wpds/download.php.

BuDDy: A BDD package (Jul. 2004) http://buddy.wiki.sourceforge.net/.
Bouajjani, A., Miiller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: CONCUR. (2005)

Lammich, P., Miiller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: CAV. (2009) To appear in.

A Decision Procedure 19

A An LTL Formula for PA A

Intuitively, for a N-PDS, a PA A can be expressed as a N-indexed LTL formula
@4 using only the “eventually” F and “next” X operators: self-loops are captured
with an F and phase-transitions with an X. Let the predicate S,, denote an
atomic-logical formula meaning that the control state all (augmented) PDSs
satisfies ¢,. That is, the control state of the PDS that results from taking the
standard cross product of PDS P with PA A is of the form (p, g,). The following
function can be used to translate a PA into an N-indexed LTL formula:

H(q)q|) = Sqq,
H(qz) = F(Sq, AXi(o (Rn(Sq, 0 A H(Gut1))) - -)

Specifically, o4 = H(q1).

B Generalizing to More Than Two PDSs

Generalizing the decision procedure from a 2-PDS system to an N-PDS system
only requires defining how to check compatibility for N lock-history tuples.
Because the set of reachable configurations, and hence the set of lock-history
tuples, are computed independently for each PDS, the construction from §6.1
that combines a PDS P with a PA A to form a new PDS P* does not change
when generalizing to N PDSs.

Generalizing the compatibility check to N lock-history tuples requires gener-
alizing Thm. 1. The extension of items 1, 2, and 5 to IV lock-history tuples is
straightforward. Items 3 and 4 define incompatibility to be a cycle of length two in
the acquisition and release histories, respectively. Hence, the generalized condition
requires checking for a cycle in the acquisition and release histories that has a
length anywhere from two to N. We use the notation Compatible(LH1,...,LHx) to
denote the generalized check. Then Alg. 1 is modified to contain N foreach loops
and the compatibility check at line 4 is replaced with Compatlble(LHl, .. LHN)

Similarly, Alg. 2 is modified to construct N WPDSs, perform N post* opera-
tions (line 1), compute N sum-over-all-paths values c|1Q|712|Q|’1, e c‘]\é‘flz@'*l
(lines 2-3), and finally perform the check

I(LHo, LHy) € elyy_y. ... (LHo, LHy) € cffy _, - Compatible(LHy, ..., LHy).
Asin Alg. 2, the compatibility check can be performed via a single BDD operation

by defining the N-way compatibility relation. This is how it is performed in our
implementation.

C Bounded Idempotent Semirings

Definition 6. A bounded idempotent semiring is a tuple (D,®,®,1,0),
where D is a set whose elements are called weights; 1,0 € D; and ® (the
extend operation) and & (the combine operation) are binary operators on D
such that

20 Nicholas Kidd, Peter Lammich, Tayssir Touili, and Thomas Reps

1. (D, ®) is a commutative monoid with 0 as its neutral element, and where @

is idempotent (i.e., for alla € D, a® a = a).

(D,®) is a monoid with 1 as its neutral element.

3. ® distributes over &, i.e., for all a,b,c € D we have

a@b®c)=(a@b)@(a®c) and (adb)@c=(a®@c)P(b®c).

4. 0 is an annihilator with respect to ®, i.e., foralla€ D, a®0=0=0®a

5. In the partial order T defined by Ya,b € D, a T b iff a ® b = a, there are no
infinite descending chains.

o

A multi-arity relational weight domain over S and 6, as defined in Defn. 5,
meets the requirements of Defn. 6 because of (i) the properties of polynomial
addition and truncated polynomial multiplication, (ii) the fact that the set of all
relations of finite arity > 2 and the operation of generalized relational composition
defined in Defn. 4 (“;”) is a monoid, and (iii) “;” is both left- and right-distributive
over union of arity-k relations.

