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Abstract. The explicit-state analysis of concurrent systems must han-
dle large state spaces, which correspond to realistic systems contain-
ing many parallel processes and complex data structures. In this pa-
per, we combine the on-the-fly approach (incremental construction of
the state space) and the distributed approach (state space exploration
using several machines connected by a network) in order to increase
the computing power of analysis tools. To achieve this, we propose
Mb-DSolve, a new algorithm for distributed on-the-fly resolution of
multiple block, alternation-free boolean equation systems (Bess). First,
we apply Mb-DSolve to perform distributed on-the-fly model check-
ing of alternation-free modal µ-calculus, using the standard encoding of
the problem as a Bes resolution. The speedup and memory consump-
tion obtained on large state spaces improve over previously published
approaches based on game graphs. Next, we propose an encoding of the
conformance test case generation problem as a Bes resolution from which
a diagnostic representing the complete test graph (Ctg) is built. By ap-
plying Mb-DSolve, we obtain a distributed on-the-fly test case genera-
tor whose capabilities scale up smoothly w.r.t. well-established existing
sequential tools.

1 Introduction

The explicit-state verification of concurrent finite-state systems is confronted in
practice with the state explosion problem (prohibitive size of the underlying state
spaces), which occurs for realistic systems containing many parallel processes and
complex data structures. Various approaches have been proposed for combating
state explosion, among which: on-the-fly verification constructs the state space
in a demand-driven way, thus allowing the detection of errors without a priori
building the entire state space, and distributed verification uses the computing
resources of several machines connected by a network, thus allowing to scale up
the capabilities of verification tools by one or two orders of magnitude. Practical
experience suggests that combining these two techniques leads potentially to
better results than using them separately.

Given that verification tools are complex pieces of software, their design
should promote modular architectures and intermediate representations, in order



to reuse existing achievements as much as possible. Boolean Equation Systems
(Bess) [22] are a useful intermediate representation for various verification prob-
lems, such as model checking of modal µ-calculus [1, 22], equivalence checking [2,
24], and partial order reduction [28]. Numerous sequential algorithms for on-the-
fly Bes resolution were proposed [1, 31, 22, 26], some of them being subject to
generic implementations, such as the Cæsar Solve library [25], which serves
as computing engine for the model checker Evaluator [26, 24], the equiva-
lence checker Bisimulator [24, 3], and the reductor Tau Confluence [28, 25],
developed within the Cadp toolbox [11]. Due to their modular architecture, dis-
tributed versions of these tools can be obtained in a straightforward manner by
developing distributed Bes resolution algorithms, such as DSolve [17], which
handles Bess with a single equation block and underlies the distributed version
of Bisimulator [16].

In this paper, we propose Mb-DSolve, a new distributed on-the-fly resolu-
tion algorithm for multiple block, alternation-free Bess. The algorithm is based
upon a distributed breadth-first exploration of the boolean graph [1] representing
the dependencies between boolean variables of a Bes. Our first application of
Mb-DSolve was the distributed on-the-fly model checking of alternation-free
µ-calculus formulas (as computing engine for Evaluator), using the standard
translation of the problem into a Bes resolution [19, 6, 1]. The only existing dis-
tributed on-the-fly algorithm for solving this problem was proposed in [4] and
is based on game graphs, stemming from a game-based formulation of the prob-
lem [29]. The latest version of this algorithm, called Ptcl1 and implemented
in the model-checker UppDmc [13], has an extension, called Ptcl2, which is
also able to handle µ-calculus formulas of alternation depth 2 [21] and exhibits
good performance on large state spaces, such as those of the Vlts benchmark
suite1. Although the two algorithms Mb-DSolve and Ptcl1 are graph-based
and therefore similar in spirit, Mb-DSolve allows all machines involved in the
distributed computation to handle simultaneously all equation blocks of a Bes,
thus potentially reaching a higher degree of concurrency than Ptcl1, which at
a given moment synchronizes and employs all machines to solve a precise part,
called component, of the game graph. This intuition is confirmed experimentally
on large states spaces from the Vlts benchmark.

Our second application of Mb-DSolve was the distributed on-the-fly gen-
eration of conformance test cases from specifications and test purposes (both
given as state spaces), following the approach advocated in the Tgv tool [15].
To achieve this, we proposed an encoding of the test generation problem as a Bes

resolution from which a diagnostic representing the Complete Test Graph (Ctg)
is built, and we implemented it within Cadp in a tool named Extractor. This
led to sequential and distributed test case generation functionalities, obtained by
applying the algorithms of Cæsar Solve optimized for disjunctive/conjunctive
Bess [25] and Mb-DSolve, respectively. The Bes technology proved again its
usefulness: the performance of the sequential version of Extractor exhibits
comparable performances with the optimized algorithms of Tgv, and the dis-

1 http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html



tributed version scales smoothly to larger systems. As far as we know, this is the
first attempt of building a distributed on-the-fly conformance test generator.

The paper is organized as follows. Section 2 recalls basic definitions of Bess
and describes in detail the Mb-DSolve resolution algorithm. Section 3 trans-
lates the problems of model checking alternation-free µ-calculus formulas and
of conformance test case generation into Bes resolutions. Section 4 shows ex-
perimental data comparing the performance of the distributed tools with their
sequential versions and with other similar distributed tools. Finally, Section 5
gives some concluding remarks and directions for future work.

2 Distributed Local Resolution of Alternation-Free BESs

We first define the framework underlying the manipulation of alternation-free
Bess, and then we present the Mb-DSolve algorithm for distributed on-the-fly
resolution.

2.1 Alternation-Free BESs

A Boolean Equation System (Bes) [1, 22], defined over X , a set of boolean
variables, is a tuple B = (x,M1, ...,Mn), where x ∈ X is a boolean variable and
Mi are equation blocks (i ∈ [1, n]). Each block Mi = {xj

σi= opjXj}j∈[1,mi] is a
set of minimal (resp. maximal) fixed point equations of sign σi = µ (resp. σi = ν).
The right-hand side of each equation j, from block Mi, is a pure disjunctive or
conjunctive formula obtained by applying a boolean operator opj ∈ {∨,∧} to a
set of variables Xj ⊆ X . The boolean constants false and true abbreviate the
empty disjunction ∨∅ and the empty conjunction ∧∅. A variable xj depends
upon a variable xl if xl ∈ Xj . A block Mi depends upon a block Mk if some
variable of Mi depends upon a variable defined in Mk. A block is closed if it
does not depend upon any other blocks. A Bes is alternation-free if there are
no cyclic dependencies between its blocks; in this case, the blocks are sorted
topologically such that a block Mi only depends upon blocks Mk with k > i.
The main variable x must be defined in block M1.

The semantics [[opi{x1, ..., xk}]]δ of a formula opi{x1, ..., xk} w.r.t. B =
{false, true} and a context δ : X → B, which must initialize all variables x1, ...,
xk, is the boolean value opi(δ(x1), ..., δ(xk)). The semantics [[Mi]]δ of a block Mi

w.r.t. a context δ is the σi-fixed point of a vectorial functional Φiδ : Bmi → B
mi

defined as Φiδ(b1, ..., bmi) = ([[opjXj ]](δ 
 [b1/x1, ..., bmi/xmi ]))j∈[1,mi], where
δ 
 [b1/x1, ..., bmi/xmi ] denotes a context identical to δ except for variables
x1, ..., xmi , which are assigned values b1, ..., bmi , respectively. The semantics of
an alternation-free Bes is the value of its main variable x given by the solution of
M1, i.e., δ1(x), where the contexts δi are calculated as follows: δn = [[Mn]][] (the
context is empty because Mn is closed), δi = ([[Mi]]δi+1)
 δi+1 for i ∈ [1, n− 1]
(a block Mi is interpreted in the context of all blocks Mk with k > i).

The local (or on-the-fly) resolution of an alternation-free Bes B =
(x,M1, ...,Mn) consists in computing the value of x by exploring the right-hand



sides of the equations in a demand-driven way, without explicitly constructing
the blocks. Several sequential on-the-fly Bes resolution algorithms are avail-
able [6, 1, 22, 7]; here we adopt the approach proposed in [1], which formulates
the resolution problem in terms of the boolean graph encoding the dependen-
cies between variables of the Bes (see Figure 2 for an example of Bes with
three blocks and its associated boolean graph; black and white vertices denote
false and true variables, respectively). The resolution of variable x amounts to
perform a forward exploration of the dependencies going out of x, intertwined
with a backward propagation of stable variables (whose value is determined)
along dependencies; the resolution terminates either when x becomes stable (af-
ter propagation of some stable successors) or when the portion of boolean graph
reachable from x is completely explored.

2.2 Distributed Local Resolution Algorithm

To achieve an on-the-fly distributed resolution of multiple block, alternation-free
Bess, we have designed a new algorithm, called Mb-DSolve (for MultiBlock
Distributed SOLVEr), which consists mainly of the following components.

A distributed-memory architecture model. Performances of distributed
algorithms highly depend on the architecture on which they are executed. Dis-
tributed architectures that are targeted in this study, do not hold a shared
memory and are rather generic, since they are essentially composed of machines
interconnected through standard network (e.g., Gigabit Ethernet) present in
most companies and laboratories. Examples of such architectures, based upon
message passing, are the networks of workstations (Nows) and the clusters of
Pcs.

A SPMD programming model. Each computing machine, called worker
node, executes an instance of our distributed algorithm Mb-DSolve (defined on
Figure 1), according to the Single Program, Multiple Data (Spmd) programming
model. Data is provided through the local exploration of the boolean graph asso-
ciated to the Bes and by the reception of boolean variables (i.e., boolean graph
vertices) sent from remote nodes. Equation blocks are processed by two inter-
twined graph traversals: (1) a local forward exploration, based on a Dfs of the
dependency graph between blocks (in Expansion at line 11), and on a Bfs of
the boolean graph of each block (in Expand at line 64)), starting from the main
variable x; (2) a propagation of stable boolean variables (whose values have been
computed) along backward dependencies (i.e., edges of the boolean graph). In
addition to worker nodes, a special supervisor process, usually executed on the
user local machine, is responsible for initializing the distributed computation
by copying files and launching workers on remote nodes, for collecting statistics
about the Bes resolution, and for detecting (normal and urgent) termination. A
description of the supervisor process associated to the DSolve resolution algo-
rithm for single block Bess can be found in [17]. Its extension to multiple block
Bess involves a multiplexing of the data structures for each equation block and
of the distributed termination detection (Dtd) algorithm in order to detect the
partial termination of each block and the global termination of the resolution.



1 Mb-DSolve(x,(V ,E,L),N,P,h,i)→ B :
2 if h(x) = i then
3 Sb(x)i := {x}; Wb(x)i := put(x,nil);
4 initialize(x)
5 endif; termb(x)i := false;
6 while ¬termb(x)i do
7 if IReceive(msgi, senderi) then
8 Read(msgi, senderi)
9 elsif (li := Stabilization?) ≤ N then
10 Stabilization(li)
11 elsif (ki := Expansion?) ≥ 1 then
12 Expansion(ki)
13 else
14 Receive(msgi, senderi);
15 Read(msgi, senderi)
16 endif
17 endwhile;
18 returnv(x)

19 Read(mi, si):
20 case mi is
21 Exp(xksi , yli) → if k �= l then
22 Qli ∪ := {(xksi , yli)}
23 else Expand(xksi , yli) endif
24 Evl(xki, ylsi) → if k �= l then
25 exp reqki − := 1 endif;
26 if ¬stable(xki) then
27 Stabilize(xki, ylsi) endif
28 endcase

29 Stabilization(l):
30 while Bli �= ∅ ∨ (termli ∧ Rli �= ∅) do
31 if Bli �= ∅ then yli := get(Bli);
32 Bli \ := {yli} else yli := get(Rli);
33 Rli \ := {yli} endif;
34 forall wkj ∈ d(yli) ∧ (Bli �= ∅ ∨ k �= l)
35 ∧¬termb(x)i ∧ ¬stable(wkj) do
36 if h(wkj) = i then
37 if k �= l then exp reqki − := 1
38 endif; Stabilize(wkj , yli)
39 else Sending(Evl(wkj , yli), h(wkj))
40 endif
41 endfor; d(yli) := ∅
42 endwhile

43 Stabilize(wki, ylj):
44 if ((L(wki) = ∨) ∧ v(ylj))∨
45 ((L(wki) = ∧) ∧ ¬v(ylj)) then
46 s(wki) := ylj ; c(wki) := 0;

47 stable(wki) := true
48 else c(wki) − := 1 endif;
49 if stable(wki) then Bki ∪ := {wki};
50 if wki ∈ Rki then Rki \ := {wki}
51 endif; termb(x)i := stable(x)
52 endif

53 Expansion(k):
54 if Wki = nil then
55 forall (xlj , yki) ∈ (Qki)
56 ∧¬termb(x)i do
57 if j �= i ∨ ¬stable(xlj)
58 then Expand(xlj , yki)
59 elsif l �= k then
60 exp reqli − := 1 endif
61 endfor
62 else
63 xki := head(Wki);Wki := tail(Wki);
64 forall ylj ∈ E(xki) ∧ ¬termb(x)i

65 ∧¬stable(xki) do
66 if k �= l then exp reqki + := 1
67 endif;
68 if h(ylj) = i then
69 if k �= l then
70 Qli ∪ := {(xki, ylj)}
71 else Expand(xki, ylj) endif
72 else
73 Sending(Exp(xki, ylj), h(ylj))
74 endif
75 endfor
76 endif

77 Expand(xkj , yli):
78 if yli /∈ li then
79 Sli ∪ := {yli}; initialize(yli);
80 if c(yli) �= 0 then
81 Wli := put(yli,Wli)
82 else stable(yli) := true endif
83 endif;
84 if k �= l ∧ yli �∈ Rli then
85 Rli ∪ := {yli} endif;
86 if stable(yli) then
87 if yli ∈ Rli then Rli \ := {yli}
88 endif;
89 if h(xkj) = i then
90 if k �= l then exp reqli − := 1
91 endif; Stabilize(xkj , yli)
92 else Bli ∪ := {yli};
93 d(yli) ∪ := {xkj} endif
94 else d(yli) ∪ := {xkj} endif

Fig. 1. Distributed local resolution of multiple block, alternation-free Bes using its
boolean graph



The function Mb-DSolve, presented on Figure 1, describes the behavior of
a worker node i : [1..P ] during a distributed resolution on P nodes of the main
variable x ∈ V of the multiple block Bes B = (x,M1, ...,MN) composed of N
blocks and defined by the boolean graph (V , E, L), where V = {xj | j ∈ [1,mi]}
is the set of vertices (boolean variables), E : V → 2V , E = {xj → xk | xk ∈ Xj},
the set of edges (dependencies between variables), and L : V → {∨,∧}, L(xj) =
opj , the vertex labeling (disjunctive or conjunctive). The set of successors of a
vertex x is noted E(x). Data distribution is ensured by a static hash function
h : V → [1..P ] globally known by all workers. Upon termination, the function
returns the final boolean value computed for the main variable x.

Due to space limitations, only the main part of Mb-DSolve is detailed on
Figure 1. To each block k is associated, locally to node i, a set Ski ⊆ V which
stores visited vertices, a Bfs queue Wki which stores vertices visited but not
explored yet, and three variable sets Bki, Rki, and Qki (all initially empty)
used to store stable variables, unstable variables with an interblock predeces-
sor dependency, and interblock transitions pending to be explored, respectively.
exp reqki, initialized to 0, gives the number of interblock transitions starting
from variables in block k locally to node i, which needs to be eventually tra-
versed by propagating he values of stable target variables. To each vertex yki are
associated four informations: a counter c(yki), which keeps the number of yki’s
successors that must be stabilized in order to make the value of yki stable, its
boolean value v(yki), a set d(yki) containing the vertices that currently depend
upon yki, and stable(yki) indicating if yki has a stable value (i.e., if c(yki) = 0 or
if yki belongs to a completely explored and stabilized portion of block k). These
informations are set up by initialize(yki) as follows: depending on fixed point
sign, µ or ν, and variable type, ∧ or ∨, c(yki) is initialized to |E(yki)| (i.e., if
(σ(b(x)) = µ ∧ L(x) = ∧) ∨ (σ(b(x)) = ν ∧ L(x) = ∨)) or 1 otherwise; v(yki) is
initialized w.r.t. the fixed point sign defining the variable yki (i.e., if σ(b(x)) = µ
then false); d(yki) is initially empty; and stable(yki) is initially false.

At each iteration of the main while-loop (lines 6–17), received messages are
processed first (lines 7–8). Then, the block with minimal index li ∈ [1, N ] that
has stable variables not propagated yet (i.e., Bli 
= ∅) or that is completely
explored but contains interblock predecessor dependencies not yet traversed
by backward propagation of stable values (i.e., termli ∧ Rli), is returned by
Stabilization and stabilized by Stabilization(li) (lines 9–10). If such block
does not exist, the block ki with maximal index that has a non-empty Bfs

queue (i.e., Wki 
= nil) or that is completely explored and contains pend-
ing resolution requests on unvisited variables (i.e., exp reqki = 0 ∧ Bki =
Rki = ∅ ∧ termki ∧ Qki 
= ∅), is returned by Expansion and explored with
Expansion(ki) (lines 11–12). Finally, if there is no more work on any block, the
worker i remains blocked on reception, waiting, e.g., for termination detection
messages sent by the supervisor (lines 14–15).

A distributed generation of diagnostics (examples and counterex-
amples). The result of the distributed Bes resolution must be accompanied by
a diagnostic (example or counterexample) which provides the minimal amount



of information needed for understanding the value computed for the main vari-
able x. Mb-DSolve computes diagnostic information in the form of a boolean
subgraph rooted at x, following the approach proposed in [23]. The minimal
information necessary for producing the diagnostic is stored as s(wki (line 46),
indicating the successor of variable wki that stabilized it after a backward prop-
agation (e.g., a true successor of an ∨-variable). This provides an implicit, dis-
tributed representation of the diagnostic, which can be explored on-the-fly once
the resolution has finished.

A distributed termination detection for each equation block. The
variable termb(x)i is set to true when distributed termination of the Bes res-
olution is detected. Conditions of termination are: either the main variable x
has been stabilized (c(x) = 0) during backward propagation (line 51), or the
boolean graph has been completely explored, i.e., all local working sets of vari-
ables are empty (∀i ∈ [1..P ], k ∈ [1..N ] · Wki = nil ∧ Bki = Rki = Qki =
∅ ∧ exp reqki = 0) and no more messages are transiting through the network.
Our proposed distributed algorithm contains a mechanism of partial termination
detection (termki) given a block k under resolution on node i. This approach
enables to obtain a fine-grain parallelism of the Bes resolution by allowing con-
current distributed graph traversals on different blocks at the same time. The
inactivity detection of the nodes locally to the resolution of a particular block,
enables to speedup the overall Bes resolution by increasing the number of blocks
explored in parallel, and then, the probability of finding more rapidly a partially
solved block from which stable values can be propagated.

Our Dtd is based on the four-counter method presented in [27] on a star-
shaped topology with a central agent (the supervisor process) whose role is
asymmetric to worker nodes [14]. Activity status of workers is regularly sent to
the supervisor, which therefore has a global view of the computation and is able
to initiate the Dtd for an equation block with higher probability of success than
traditional ring-based Dtd algorithms.

A linear complexity in time, memory and messages. Mb-DSolve is
based on the theory of boolean graphs underlying the sequential resolution al-
gorithms for alternation-free Bess [1, 31]. It consists roughly of two intertwined
traversals (forward and backward) of the boolean graph, with a worst-case time
complexity O(|V | + |E|). The same bound applies for memory complexity, due
to dependencies (between variables in a same block, and between blocks) that
are stored during resolution for eventual propagations of stable variables. The
communication cost of Mb-DSolve can also be estimated, assuming that mes-
sages (excluding those for Dtd) are sent for each cross-dependency (i.e., edge
(x, y) ∈ E | h(x) 
= h(y)). Since the hash function h shares variables equally
among nodes without a priori knowledge about locality, it also shares depen-
dencies equally. Thus, the number of cross-dependencies can be evaluated to
((P − 1)/P ) · |E|, since statistically only |E|/P edges will be local to a node.
Hence, the message complexity is O(|E|), the worst-case being obtained with two
messages (expansion and stabilization) exchanged per cross-dependency, i.e., at
most 2 · ((P − 1)/P ) · |E| messages. Theoretically, our Dtd algorithm has also



a message complexity linear in the number of edges (O(|E|)), but in practice it
reveals to be very efficient, with only 0.01% of total exchanged messages used
for Dtd, thanks to the supervisor process, which has an up-to-date global view
of the computation.

Illustration of the distributed local resolution. Let us consider the
boolean graph on the left part of Figure 2 as a simple multiple block, alternation-
free Bes example. It suggests that the distribution function h will map the given
vertices onto three computation nodes (from P1 to P3) as shown on the right
part of Figure 2. Starting with the main variable x1,1, its successors x2,1 and
x1,2 are computed locally to P1 and sent to node P3, respectively. Now, x2,1

and x1,2 can be expanded in parallel with the effect that x3,1 is sent to node
P2, that x1,3 has an interblock predecessor dependency with x2,1, and that x1,3

and x2,2 are computed locally to node P3. Since x1,3 is an empty disjunction
(i.e., a constant false), its value is stable and can be propagated through back-
dependencies (i.e., predecessor vertices) in o! rder to stabilize ∧-vertex x2,1 but
not ∨-vertex x1,2. By further propagating stable values, such as the value false
of x2,1, we eventually stabilize the value of x1,1 to false.

x1,2
µ
= x2,1 ∨ x1,3 ∨ x2,2

x1,1
ν= x2,1 ∧ x1,2

x2,1
ν= x3,1 ∧ x1,3

x3,1
ν= x3,1 ∨ x1,3

x2,2
µ
= x1,2

∧

∨ ∨

∨

∧

x1,3
ν= false

on-the-fly resolution
portion explored during an

P1

P2 P3

∧

x1,1

x2,1

x3,1

x1,3 x2,2

x1,2

diagnostic

block 2

block 1

block 3

Fig. 2. A multiple block, alternation-free Bes, its partitioned boolean graph, and the
result of a distributed on-the-fly resolution for x1,1 on three nodes

Since the boolean graph is constructed on-the-fly (and asynchronously be-
tween nodes), only a portion of it needs actually to be explored, as shown by
vertices x1,2 and x2,2 that can be excluded from possible explored portion (in
light grey area). This example also gives in the dark grey area a possible diagnos-
tic built upon resolution of the boolean graph. During the backward-propagation
of stable values, some information can be saved to enable later diagnostic gen-
eration whose basic mechanism is to choose which successor vertex, if it exists,
has directly stabilized the current vertex (s(wki) at line 46). As previously indi-



cated, Mb-DSolve has such a feature and gives an implicit successor function
permitting a distributed on-the-fly construction of the diagnostic.

3 Applications

We illustrate in this section the application of the Mb-DSolve algorithm on two
analysis problems defined on Labeled Transition Systems (Ltss): model checking
of alternation-free µ-calculus formulas and generation of conformance test cases.
An Lts is a tuple (S,A, T, s0) containing a set of states S, a set of actions A,
a transition relation T ⊆ S × A × S and an initial state s0 ∈ S. A transition
(s, a, s′) ∈ T , noted also s

a→ s′, states that the system can move from state s
to state s′ by executing action a (s′ is an a-successor of s). Both problems can
be formulated as the resolution of a multiple block, alternation-free Bes, the
second one essentially relying upon diagnostic generation for Bess. By applying
Mb-DSolve as Bes resolution engine, we obtain distributed versions of the
on-the-fly model checker Evaluator 3.5 [24] and the on-the-fly test generator
Tgv [15] of the Cadp toolbox [11].

3.1 Model checking for alternation-free mu-calculus

Modal µ-calculus [18] is a powerful fixed point based logic for specifying temporal
properties on Ltss. Its formulas are defined by the following grammar (where X
is a propositional variable):

φ ::= false | true | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | X | µX.φ | νX.φ

Given an Lts (S,A, T, s0), a formula φ denotes a set of states, defined as follows:
boolean formulas have their usual set interpretation; modalities 〈a〉φ (resp. [a]φ)
denote the states having some (resp. all) a-successors satisfying φ; fixed point
formulas µX.φ (resp. νX.φ) denote the minimal (resp. maximal) solution of
the equation X = φ, interpreted over 2S . The local model checking problem
amounts to establish whether the initial state s0 of an Lts satisfies a formula φ,
i.e., belongs to the set of states denoted by φ.

The alternation-free fragment of the modal µ-calculus, noted L1
µ [8], is ob-

tained by forbidding mutual recursion between minimal and maximal fixed point
variables. L1

µ benefits from model checking algorithms whose complexity is lin-
ear in the size of the Lts (number of states and transitions) and the formula
(number of operators), while still allowing to express useful properties, since it
subsumes Ctl [5] and Pdl [9]. The model checking of L1

µ formulas on Ltss can
be encoded as the resolution of an alternation-free Bes [6, 20, 1]. We illustrate
the encoding by considering the following formula, which states that the emis-
sion snd of a message is eventually followed by its reception rcv (‘−’ stands for
‘any action’ and ‘a’ stands for ‘any action different from a’):

νX.([snd ]µY.(〈−〉 true ∧ [rcv ]Y ) ∧ [−]X)



The formula is translated first into a specification in Hml with recursion [19],
which contains two blocks of modal equations:

{X =ν [snd ]Y ∧ [−]X}, {Y =µ 〈−〉 true ∧ [rcv ]Y }
Then, each modal equation block is converted into a boolean equation block by
‘projecting’ it on each state of the Lts:

{Xs =ν

∧
s
snd→s′Ys′ ∧ ∧

s→s′Xs′}s∈S , {Ys =µ

∨
s→s′true ∧ ∧

s�rcv→s′Ys′}s∈S

A boolean variable Xs (resp. Ys) is true iff state s satisfies the propositional vari-
able X (resp. Y ). Thus, the local model checking of the initial formula amounts
to compute the value of variable Xs0 by applying a local Bes resolution algo-
rithm. This method underlies the on-the-fly model checker Evaluator 3.5 [26,
24] of Cadp [11], which handles formulas of L1

µ extended with Pdl-like modal-
ities containing regular expressions over transition sequences.

3.2 Conformance test case generation

Conformance testing aims at establishing that the implementation under test
(Iut) of a system is correct w.r.t. a specification. We consider here the con-
formance test approach advocated in the pioneering work underlying the Tgv

tool [15]. We give only a brief overview of the theory used by Tgv and focus
on the algorithmic aspects of test selection, with the objective of reformulating
them in terms of Bes resolution and diagnostic generation.

The Iut and the specification are modelled as Input-output Ltss (IoLtss),
which distinguish between inputs and outputs: e.g., the actions of the IoLts of
the specification M = (SM , AM , TM , sM

0 ) are partitioned into AM = AM
I ∪AM

O ∪
{τ}, where AM

I (resp. AM
O ) are input (resp. output) actions and τ is the internal

(unobservable) action. Intuitively, input actions of the Iut are controllable by
the environment, whereas output actions are only observable. In practice, tests
observe the execution traces consisting of observable actions of the Iut, but can
also detect quiescence, which can be of three kinds: deadlock (states without
successors), outputlock (states without outgoing output actions), and livelock
(cycles of internal actions). For an IoLts M , quiescence is modelled by a sus-
pension automaton ∆(M), an IoLts which marks quiescent states by adding
self-looping transitions labeled by a new output action δ. The traces of ∆(M)
are called suspension traces of M . The conformance relation ioco [30] between
the Iut and the specification M states that after executing each suspension trace
of M , the (suspension automaton of the) Iut exhibits only those outputs and
quiescences that are allowed by M .

Test generation requires a determinization of M , since two sequences with
the same traces of observable actions cannot be distinguished. Since quiescence
must be preserved, determinization must take place after the construction of the
suspension automaton ∆(M).

A test case is an IoLts TC = (STC , ATC , T TC , sTC
0 ) equipped with three

sets of trap states Pass ∪ Fail ∪ Inconc ⊆ STC denoting verdicts. The actions



of TC are partitioned ATC = ATC
I ∪ ATC

O , where ATC
O ⊆ AM

I (TC emits only
inputs of M) and ATC

I ⊆ AIUT
O ∪ {δ} (TC captures outputs and quiescences of

the Iut). A test case must satisfy several structural properties, detailed in [15].
The test generation technique of Tgv is based upon test purposes, which

allow to guide the test case selection. A test purpose is a deterministic and
complete IoLts TP = (STP , ATP , T TP , sTP

0 ), with the same actions as the
specification ATP = AM , and equipped with two sets of trap states AcceptTP and
RejectTP , which are used to select targeted behaviours and to cut the exploration
of M , respectively. Here we focus on the computation of the complete test graph
(Ctg), which contains all test cases corresponding to a specification and a test
purpose, and therefore can serve as a criterion for comparison and performance
measures.

The Ctg is produced by Tgv as the result of three operations, all performed
on-the-fly: (a) computation of the synchronous product SP = M ×TP between
the IoLtss of the specification and the test purpose, in order to mark accepting
and refusal states; (b) suspension and determinization of SP, leading to SPvis =
det(∆(SP)), which keeps only visible behaviours and quiescence; (c) selection of
the test cases denoting the behaviours of SPvis accepted by TP, which form the
Ctg. The main operation (c) roughly consists in computing L2A, the subset of
the states of SPvis from which an accepting state is reachable (lead to accept),
checking whether the initial state of SPvis belongs to L2A (which indicates the
existence of a test case), and defining, based upon L2A, the sets Pass, Fail, and
Inconc corresponding to the verdicts. This is the operation we chose to encode
as a Bes resolution with diagnostic.

Assuming that the accepting states of SPvis are marked by self-looping tran-
sitions labeled by an action acc (as it is done in practice), the reachability of an
accepting state is denoted by the following µ-calculus formula:

φacc = µY.(〈acc〉 true ∨ 〈−〉Y )

The set L2A contains all states satisfying φacc. It can be computed in a back-
wards manner by using a fixed point iteration to evaluate φacc on SPvis . Since
this requires the prior computation of SPvis , we seek another solution suitable
for on-the-fly exploration, by considering the formula below:

φl2a = νX.(φacc ∧ [−] (φacc ⇒ X))

Formula φl2a has the same interpretation as φacc , meaning that its satisfaction
by the initial state of SPvis denotes the existence of a test case. Moreover, the
on-the-fly evaluation of φl2a on a state s satisfying φacc requires the inspection
of every successor s′ of s and, if it satisfies φacc, the recursive evaluation of φl2a

on s′, etc., until all states in L2A have been explored.
The Ctg could be obtained as the diagnostic produced by an on-the-fly

model checker (such as Evaluator) for the formula φl2a . However, to annotate
the Ctg with verdict information and to avoid redundancies caused by the two
occurrences of φacc present in φl2a , a finer-grained encoding of the problem in
terms of a Bes resolution with diagnostic is preferred. The corresponding Bes



denotes the model checking problem of φl2a on SPvis , by applying the translation
given in Section 3.1 (s, s′ are states of SPvis):

{Xs =ν Ys ∧
∧

s→s′(Zs′ ∨Xs′)}, {Ys =µ

∨
s
acc→s′true ∨ ∨

s→s′Ys′},

{Zs =ν

∧
s
acc→s′ false ∧

∧
s→s′Zs′}

If Xsvis
0

is true, then a positive diagnostic (example) can be exhibited in the form
of a boolean subgraph [23] containing, for each conjunctive variable (such as Xs

and Zs), all its successor variables, and for each disjunctive variable (such as
Ys) only one successor which evaluates to true. This diagnostic can be obtained
by another forward traversal of the boolean graph portion already explored for
evaluating Xsvis

0
. We turn it into a Ctg in the following manner: we associate a

state of the Ctg to each variable Xs; we produce an accepting transition going
out of Xs only if the first subformula in the right-hand side of the equation
defining Ys is true (i.e., s has an acc-successor); we produce a transition Xs

a→
Xs′ for each state s′ such that Zs′ is false. Note that the diagnostic for variables
Zs does not need to be explored. Additional verdict information in the form of
refuse and inconclusive transitions is produced in a similar way during disgnostic
generation, since the information needed for verdicts in the Ctg is local w.r.t.
states of L2A [15].

In the discussion above, formula φl2a was evaluated on the IoLts SPvis ob-
tained after suspension and determinization of SP; however, these two operations
can also be performed after test case selection. In other words, the Bes based
generation procedure sketched above can be applied directly on the synchronous
product SP between the specification and the test purpose, producing a ‘raw’
Ctg, which is subsequently suspended and determinized to yield the final Ctg.
This procedure underlies the Extractor tool we developed within Cadp for
producing raw Ctgs, which are then processed by the Determinator tool [12],
resulting in Ctgs strongly bisimilar to those produced by Tgv. Although this
ordering of operations is not the most efficient one for sequential on-the-fly test
case generation (since the IoLts of the specification can contain large amounts
of τ -transitions), it appears to be suitable for the distributed setting, since it
leads to large Bess solved efficiently by our distributed algorithm Mb-DSolve.

4 Implementation and Experiments

The model checker Evaluator 3.5 [26, 24] and the test case generator
Extractor (see Figure 3) have been developed within Cadp [11] by using
the generic Open/Cæsar environment [10] for on-the-fly exploration of Ltss.

Evaluator (resp. Extractor) consists of two parts: a front-end, respon-
sible for encoding the verification of the L1

µ formula (resp. the test selection
guided by the test purpose Lts2) on Lts1 as a Bes resolution, and for produc-
ing a counterexample (resp. a Ctg) by interpreting the diagnostic provided by
the Bes resolution; and a back-end, responsible of Bes resolution, playing the
role of verification engine.
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Fig. 3. The distributed on-the-fly tools Evaluator and Extractor

Sequential and distributed versions of Evaluator and Extractor are
obtained by using as back-end either the sequential algorithms of the
Cæsar Solve library [24, 25], or the Mb-DSolve algorithm, respectively.

Mb-DSolve (15 000 lines of C code) is a conservative extension of the dis-
tributed resolution algorithm DSolve [17] for single block Bess and was im-
plemented by using the Open/Cæsar environment. The size of the worker and
supervisor processes is roughly the double in Mb-DSolve w.r.t. DSolve. For
communication, Mb-DSolve is also based on the Cæsar Network library
of Cadp, which offers a set of 40 primitives finely-tuned for verification prob-
lems, such as non-blocking asynchronous emission/reception of messages through
Tcp/Ip sockets and explicit memory management by means of bounded com-
munication buffers.

We present in this section experimental measures comparing the distributed
versions of Evaluator and Extractor with their sequential counterparts and
(as regards Evaluator) with the UppDmc distributed model checker.

4.1 Performance of distributed model checking

We begun our experiments by checking two simple properties expressed in
modal µ-calculus, namely absence of deadlock (νX. (〈−〉 true∧ [−]X)) and pres-
ence of livelock (µX. (νY. (〈τ〉 Y ) ∨ 〈−〉X)), on a cluster of 21 Xeon 2.4 GHz

Pcs, with 1.5 Gb of Ram, running Linux, and interconnected by a 1 Giga-
bit Ethernet network. These properties were checked on the largest Ltss of
the Vlts benchmark. Figure 4 shows the speedup and memory ratio between
distributed Evaluator and its sequential optimized version based on the reso-



lution algorithms for disjunctive/conjunctive Bess present in Cæsar Solve [24,
25]. The sequential version is very fast in finding counterexamples, but when it is
necessary to explore the underlying Bes entirely (e.g., for cwi 7838 59101), the
distributed version becomes interesting, allowing close to linear speedups and a
good scalability as the number of workers increases. The memory overhead of
the distributed version is not really affected by an increasing number of workers
and remains low, with an averaged memory consumption around 5 times bigger
than the sequential one. Moreover, we observed almost no idle time, the dis-
tributed computation using systematically around 99% of the Cpus capacity on
each worker node. This is partly a consequence of the well-balanced data par-
titioning induced by the static hash function, and indicates a good overlapping
between communications and computations.

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

S
pe

ed
up

Number of workers

vasy_6120_11031
vasy_2581_11442
vasy_4220_13944
vasy_4338_15666
vasy_6020_19353

vasy_11026_24660
vasy_12323_27667

vasy_8082_42933
cwi_7838_59101

Ideal speedup

 0

 5

 10

 15

 20

 0  5  10  15  20  25

T
ot

al
 p

ar
. m

em
or

y 
/ s

eq
. m

em
or

y

Number of workers

vasy_6120_11031
vasy_2581_11442
vasy_4220_13944
vasy_4338_15666
vasy_6020_19353

vasy_11026_24660
vasy_12323_27667

vasy_8082_42933
cwi_7838_59101

Ideal memory ratio

(a) (b)

Fig. 4. Speedup (a) and memory overhead (b) of distributed w.r.t. sequential
Evaluator when checking absence of deadlock

We have also compared time and memory performances of distributed
Evaluator against the UppDmc model checker based on game graphs.
Results are given in Table 1, where each Vlts example considered (e.g.,
vasy 2581 11442, an Lts with 2 581 · 103 states and 11 442 · 103 transitions)
is checked for deadlock and livelock. Distributed Evaluator is very fast in
detecting counterexamples, which explains most of the improvements in time
and memory compared to UppDmc. When the whole Bes (resp. game graph)
has to be explored (e.g., for vasy 6020 19353), the execution time is closer to
that of UppDmc, but always remains between 2 and 8 times lower. In this case,
the memory consumption of distributed Evaluator is slightly greater w.r.t.
UppDmc; this is due to the simple data structures used for storing backward
dependencies (linked lists) and could be reduced by using more compact data
structures (e.g., packet lists).



Example absence of deadlock presence of livelock
truth U (s) U (MB) E (s) E (MB) truth U (s) U (MB) E (s) E (MB)

vasy 2581 11442 false 44 461 2 272 false 47 n.c. 7 844
vasy 4338 15666 false 64 745 2 313 false 64 n.c. 11 1 203
vasy 6020 19353 true 59 1 085 24 1 239 true 125 n.c. 8 1 442
vasy 6120 11031 false 95 947 1 170 false 108 n.c. 13 1 092
cwi 7838 59101 true 149 1 531 46 2 298 true 314 n.c. 16 2 793
vasy 8082 42933 false 162 1 374 2 268 false 134 n.c. 24 2 401

Table 1. Execution time (in seconds) and memory consumption (in MB) of two dis-
tributed on-the-fly model checkers: UppDmc (U) with 25 nodes and Evaluator (E)
with 21 nodes

We further experimented the scalability of distributed Evaluator by con-
sidering Ltss of increasing size and more complex properties taken from the
Cadp demos2. For instance, we used the following formula, stating that after a
put action, either a livelock, or a get action will be eventually reached:

νX. ([put ]µY. ((νZ.(〈τ〉Z)∨ (〈−〉 true∧ [
get

]
false))∨ (〈−〉 true∧ [−]Y ))∧ [−]X)

Using distributed Evaluator on 10 machines, we successfully checked in 90 sec-
onds that an Lts with 6 067 712 states and 19 505 146 transitions (modelling the
behaviour of a communication protocol that exchanges 256 different messages)
satisfies this property, whereas the sequential version (based onDfs algorithm)
of Evaluator achieved it in a prohibitive time, e.g., more than 15 minutes.
When using the sequential version (based on Bfs) of Evaluator, the advan-
tage of distributed Evaluator over sequential solution is emphasized since data
is equally splited over a network of machines, whereas sequential Bfs evaluations
need to store locally a lot of information, and are thus more prone to memory
shortage than Dfs traversals.

4.2 Performance of distributed conformance test case generation

Symetrically to the model checking experiments presented in Section 3.1, we
adopted a generic approach for experimenting conformance test case generation.
We used a generic test purpose (e.g., “after 10 visible actions, an accepting state
is reachable”) and several Ltss taken from the Vlts benchmark as inputs for our
distributed test case generator tool Extractor, and studied its behaviour on
generating corresponding raw Ctgs, subsequently suspended and determinized
using Determinator. Distributed Extractor exhibits a good behavior (with
significant speedup) for the resolution of the underlying Bes, and generates Ctgs
strongly equivalent to those produced by Tgv. Further experiments are ongoing
in order to get a precise comparison with Tgv in terms of speedup and memory
consumption.

We also experimented the generic test purpose on an Lts with 237 500 states
and 760 794 transitions (modelling the behaviour of a communication proto-
2 http://www.inrialpes.fr/vasy/cadp/demos.html



col that exchanges 50 different messages) using each of the three Ctg gener-
ators, namely Tgv, sequential and distributed versions of Extractor. The
Ctg produced by Tgv contains 10 402 states, 33 052 transitions, whereas the
Ctg produced by both sequential and distributed Extractor and processed
by Determinator has 20 703 states and 66 002 transitions.

As regards scalability of distributed Extractor, we could resolve on 16
machines the Bes corresponding to the generic test purpose and an Lts with
6 067 712 states and 19 505 146 transitions (previously used for model checking)
in less than 372 seconds, whereas sequential Extractor took more than 30
minutes, and we stopped the execution of Tgv after an hour of computation.
Another concern is the good memory consumption exhibited by Extractor

tool for both sequential and distributed versions. An example is the Vlts bench-
mark cwi 2165 8723 on which Tgv had a extremely rapid memory shortage (less
than a minute of computation) whereas Extractor was still computing after
25 minutes.

5 Conclusion and Future Work

Building efficient and generic verification components is crucial for facilitating
the development of robust explicit-state analysis tools. Our Mb-DSolve al-
gorithm for distributed on-the-fly resolution of multiple block, alternation-free
Bess, goes towards this objective. Mb-DSolve was designed to be compliant
with the interface of the Bes resolution library Cæsar Solve [24, 25], thus
being directly available as verification back-end for all analysis tools based
on Cæsar Solve. Here we illustrated its application for alternation-free µ-
calculus model checking and conformance test generation, as distributed comput-
ing engine for the tools Evaluator [26, 24] and Extractor, developed within
Cadp [11] using the generic Open/Cæsar environment [10] for Lts exploration.

The modular architecture of these tools does not penalize their performance.
Our experiments using large state spaces from the Vlts benchmarks have shown
that distributed Evaluator compares favourably in terms of speed and mem-
ory with UppDmc, the other existing implementation of distributed on-the-fly
model checking, based on game graphs [13]. Moreover, distributed Evaluator

exhibits a good speedup and scalability w.r.t. its sequential version, relying on
the optimized algorithms of Cæsar Solve for disjunctive/conjunctive Bess.
Distributed Extractor, to our knowledge the first tool of its kind to perform
distributed on-the-fly conformance test generation, allows to scale up the capa-
bilities of well-established dedicated tools, such as Tgv [15].

We plan to continue our work along two directions. First, we will study
other distributed resolution strategies, aiming at reducing memory consumption
for disjunctive/conjunctive Bess, which occur frequently in practice [24]: one
such strategy could combine a distributed breadth-first and a local depth-first
exploration of the boolean graph. Next, we will consider the encoding of other
problems, such as discrete controller synthesis, in terms of Bes resolution with
diagnostic, following, e.g., the approach proposed in [32].
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