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Abstract. The Stop-and-Wait protocol (SWP) has two (unbounded)
parameters: the maximum sequence number (MaxSeqNo) and the max-
imum number of retransmissions (MaxRetrans). This paper presents an
algebraic method for analysis of the SWP for all possible values of these
parameters. Model checking such a system requires considering an in�-
nite family of models, one for each combination of parameter values, and
thus an in�nite family of state spaces (reachability graphs). These reach-
ability graphs are represented symbolically by a set of algebraic formulas
in MaxSeqNo and MaxRetrans. This result is signi�cant as it provides a
complete characterisation of the in�nite set of reachability graphs of our
SWP model in both parameters, allowing properties to be veri�ed for
the in�nite class. Veri�cation of a number of properties is described.

Keywords: Stop and Wait Protocols, In�nite Families of Systems, Para-
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1 Introduction

Stop-and-Wait is an elementary and well-known form of 
ow control [20,22] used
by communication protocols to prevent bu�er over
ow in the receiver. In practice
Stop-and-Wait is often used with checksums to detect transmission errors and
a timeout/retransmission scheme using sequence numbers, such as Automatic
Repeat ReQuest [22], for error recovery.

The Stop-and-Wait mechanism forms the basis of many practical data trans-
fer protocols, such as the Internet's Transmission Control Protocol (TCP) [19].
An understanding of how these mechanisms work and how they may fail is
thus useful for the veri�cation of more complex protocols like TCP. These pro-
tocols have a number of parameters, such as the maximum sequence number
(MaxSeqNo) or the maximum number of retransmissions (MaxRetrans). The
value of these parameters may vary depending on the application (e.g. TCP has
a 32 bit sequence number, whereas others may use a 3 bit sequence number). It
is thus of interest to verify these protocols for all values of these parameters.

? Partially supported by Australian Research Council (ARC) Discovery Grant
DP0559927.



Petri nets have proven to be a suitable formal method for protocol veri�ca-
tion [2,3,6,15,17]. A Coloured Petri net (CPN) [14,16] model of the SWP, param-
eterised by MaxSeqNo and MaxRetrans, was developed and analysed in [4{6] fol-
lowing the protocol veri�cation methodology presented in [6]. Because the model
parameters are unbounded there is an in�nite set of CPN models to verify, and
state explosion [23] prevents analysis for all but small parameter values. Thus we
were motivated to �nd a way to verify the SWP for any �nite (but unbounded)
value of the parameters. In [12] we presented a novel technique of representing
the reachability graphs (RGs) of the SWP CPN symbolically in the MaxSeqNo

parameter (with MaxRetrans=0) using algebraic expressions, and veri�ed a num-
ber of properties directly from the expressions, including language equivalence
to the service, for all values of the unbounded MaxSeqNo parameter.

Related work on symbolic veri�cation considers only the MaxRetrans param-
eter. Abdulla et al [1] verify the Alternating Bit Protocol (ABP) (MaxSeqNo=1)
with unbounded retransmissions and a variant called the Bounded Retransmis-
sion Protocol in which MaxRetrans is modelled nondeterministically. In [7,8] we
used a tool called FAST (Fast Acceleration of Symbolic Transition Systems) [9]
to model the SWP and analyse it symbolically. We were successful when MaxRe-

trans was an unbounded parameter, but were only successful for small (up to 5)
values of MaxSeqNo. In [24] a variant of the ABP with arbitraryMaxRetrans and
operating over channels with a capacity of one message only, was veri�ed using
Valmari's Chaos-Free-Failures-Divergences (CFFD) equivalence. In contrast, our
model operates over unbounded lossy ordered channels (similar to [1]) and ex-
plicitly considers any maximum sequence number (not just the alternating bit)
and any maximum number of retransmissions.

In this paper, the work in [12] is signi�cantly extended by obtaining alge-
braic expressions for the in�nite set of RGs of the SWP operating over an ordered
medium over both the MaxSeqNo and MaxRetrans parameters. A sketch of the
proof of correctness is given, details of which can be found in [10]. The contribu-
tion of this paper is threefold. Firstly, we further develop the novel algebraic rep-
resentation method from [12]. Secondly, we provide the aforementioned symbolic
representation. Inclusion of the MaxRetrans parameter represents a substantial
increase in the complexity of the algebraic expressions, as the size of the RG
grows quartically in this parameter [11, 12]. Thirdly, we sketch the veri�cation
of a number of properties directly from the algebraic expressions. The authors
are not aware of any previous attempts to obtain an explicit algebraic represen-
tation for the family of RGs for arbitrary unbounded values of the MaxSeqNo

and MaxRetrans parameters for the class of Stop-and-Wait protocols.

The rest of this paper is organised as follows. Section 2 presents our paramet-
ric SWP CPN model. The necessary notational constructs and lemmas regarding
model behaviour are presented in Section 3. The parametric algebraic expressions
of the RG are presented in Section 4, followed by a description of the veri�ca-
tion of a number of properties. Conclusions and future work are presented in
Section 5. Familiarity with basic CPN concepts and terminology is assumed. For
introductions to CPNs the reader is referred to [14, 16].
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val MaxRetrans = 0;

val MaxSeqNo = 1;

color Sender = with s_ready | wait_ack;

color Receiver = with r_ready | process;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = Seq;

color MessList = list Message;

var sn,rn : Seq;

var rc : RetransCounter;

var queue : MessList;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

fun Contains([],sn) = false

| Contains(m::queue,sn) = if(sn=m) then true else Contains(queue,sn);

fun Loss(m::queue,sn) = if(sn=m) then queue else m::Loss(queue,sn);

Fig. 1. A CPN of the Stop-and-Wait Protocol operating over an in-order medium.

2 The Stop-and-Wait Protocol CPN Model

The SWP is modelled using Coloured Petri nets [14, 16], a form of Petri net in
which tokens are arbitrarily complex data values. The CPN diagram is shown in
Fig. 1 along with all the declarations used in the inscriptions of the CPN diagram.
The inscription language is a variant of Standard ML [21]. The two parameters
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MaxRetrans and MaxSeqNo can be seen at the top of the declarations in Fig. 1.
This model is the same as the one presented in [12], with the exception of loss.
This change is motivated and described below. (The focus of this paper is not
the modelling of SWP with CPNs. A detailed description of the model is given
in [12] and hence omitted here.)

The channels are modelled as lists manipulated by the arc inscriptions as
First-In-First-Out (FIFO) queues in places mess channel and ack channel. Tran-
sitions mess loss and ack loss model loss, both in the network (bu�er over
ow in
a router) and by discarding messages and acknowledgements with transmission
errors (checksum failures). Unlike the model in [12], loss can occur anywhere in
the message and acknowledgement queues, not just from the head. This is done
via nondeterministic binding of variables sn and rn and the function Contains

in the guard of each loss transition, to ensure that sn and rn are only bound
to values that are present in the channels. The removal of the message is via
function Loss in the arc inscriptions.

Motivation is provided by it being a more general model, suited to the TCP
environment, where loss can occur anywhere in the network due to e.g. router
congestion, in addition to loss caused by detection of errors. It turns out that
this model of loss is easier to formalise in the algebraic expressions in Section 4.

3 Notation and Model Properties

This section introduces notation and proves a number of properties of the SWP
CPN model required for the proof of correctness of the algebraic formula pre-
sented in Section 4.

3.1 Marking and Arc Notation

We begin by de�ning the RG of a CPN. In CPN terminology, a reachability
graph is often called an occurrence graph (OG).

De�nition 1 (Reachability Graph). The OG of a CPN with initial marking,
M0, and a set of binding elements, BE, is a labelled directed graph OG = (V,A)
where

1. V = [M0i is the set of reachable markings of the CPN; and
2. A = f(M; (t; b);M 0) 2 V �BE�V jM [(t; b)iM 0g is the set of labelled directed

arcs, where M [(t; b)iM 0 denotes that the marking of the CPN changes from
M to M 0 on the occurrence of transition t with binding b, (t; b) 2 BE.

The parameterised CPN and its RG are denoted by CPN(MS;MR) andOG(MS;MR)

given by the following de�nition:

De�nition 2 (Parameterised CPN and Reachability Graph). For MS 2
N
+ and MR 2 N; CPN(MS;MR) is de�ned as the Stop-and-Wait Protocol CPN

of Fig. 1 with MaxSeqNo = MS and MaxRetrans = MR. The reachability graph
of CPN(MS;MR) is denoted by OG(MS;MR) = (V(MS;MR); A(MS;MR)).
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In order for the notation for markings and arcs de�ned below to be correct,
we must prove that each place in the SWP CPN with initial marking M0 as
illustrated in Fig. 1 always contains exactly one token.

Lemma 1. For all reachable markings of CPN(MS;MR) and all allowable values
of MS and MR, each place in the CPN diagram contains exactly one token, i.e.
8MS 2 N

+ ;8MR 2 N;8M 2 V(MS;MR); jM(sender state)j = jM(receiver state)j
= jM(retrans counter)j=jM(mess channel)j=jM(ack channel)j=jM(send seq no)j
= jM(recv seq no)j = 1.

Sketch of Proof. Proof is by direct inspection of Fig. 1. Consider the recv seq no

place. M0(recv seq no) = 1`0 and so jM0(recv seq no)j = 1. The marking of this
place can only be changed by transitions receive mess and send ack. The occur-
rence of these transitions either replaces one value by another (the receive mess

transition when sn=rn) or does not change the marking (the receive mess tran-
sition when sn6=rn and the send ack transition). The value ofMS may a�ect the
token value (via function NextSeq) but it does not a�ect the number of tokens
removed or added (always 1). Hence jM(recv seq no)j = 1 for all markings. Simi-
lar arguments reveal that this property also holds for the remaining 6 places. ut

The following function converts a singleton multiset into its basis element:

De�nition 3 (Singleton Multiset to Colour). Let SMS1 be the set of all
singleton multisets over a basis set S : SMS1 = ff(s; 1)gjs 2 Sg. A function that
converts a singleton multiset to its basis element is given by fc : SMS1 ! S,
where fc(f(s; 1)g) = s.

In addition, the following notational conventions are used throughout this paper:

{ M [ti is used as shorthand to represent that transition t is enabled by marking
M for some binding of variables b, such that M [(t; b)i; (t; b) 2 BE.

{ jfc(M(p))j is the length of the list on places p 2 fmess channel; ack channelg.
{ ij represents j repetitions of the message (or acknowledgement) with se-
quence number i in the message (or acknowledgement) channel;

{ �MS represents modulo MS + 1 addition; and
{ 	MS represents modulo MS + 1 subtraction.

The markings of our SWP CPN can be classi�ed into types based on the
four possible combinations of the major state of the sender and receiver, i.e.
the markings of places sender state and receiver state. The relationship between
the sender sequence number (ssn) and receiver sequence number (rsn), either
rsn = ssn or rsn = ssn �MS 1, gives rise to subtypes for two of the four
combinations of major state. Thus there are six combinations in total, giving
the six types, 1, 2a, 2b, 3a, 3b and 4, shown in Table 1. An explanation of the
signi�cance of each type is given in [10].

De�nition 4 (Markings to Types). We de�ne the family of functions that
classi�es markings as TypeMS : V(MS;MR) ! f1; 2a; 2b; 3a; 3b; 4g where the body
of TypeMS is given in Table 1.
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Table 1. Classi�cation of markings M 2 V(MS;MR) into types based on the state of
the sender and receiver.

M(sender state) M(receiver state) M(send seq no) M(recv seq no) TypeMS(M)

1`s ready 1`r ready 1`sn 1`sn 1
1`wait ack 1`r ready 1`sn 1`sn 2a
1`wait ack 1`r ready 1`sn 1`(sn�MS 1) 2b
1`wait ack 1`process 1`sn 1`sn 3a
1`wait ack 1`process 1`sn 1`(sn�MS 1) 3b
1`s ready 1`process 1`sn 1`sn 4

In addition, the following assumptions are made about the content of the
communication channels, all of which are proved valid at the end of Section 4.1.

Assumption 1 The content of the message and acknowledgement channels is
a list of contiguous integers of the form i�j� where i; j 2 f0; :::;MaxSeqNog.

Assumption 2 The message and acknowledgement channels contain at most
two distinct consecutive integers, i.e. of the form i�j� where j = i�MS 1.

Assumption 3 All reachable markings M 2 V(MS;MR) of CPN(MS;MR) can be
classi�ed into one of the 6 types in Table 1.

Using Lemma 1, Assumptions 1, 2 and 3, and Table 1, every marking can be
encoded and uniquely identi�ed by the following marking notation:

De�nition 5 (Shorthand Marking Notation). For CPN(MS;MR) all mark-
ings M 2 V(MS;MR) can be uniquely identi�ed and represented by the notation

M
(MS;MR)
(type;ssn);(mo;ao;mn;an;ret) where the superscript contains the parameter values

of the SWP CPN and the subscript contains the marking description, where:

{ type = ftype(M);
{ ssn 2 f0; 1; :::;MSg is the sender sequence number;
{ mo 2 N is the number of old (duplicate) messages with sequence number
ssn	MS 1 in the message channel;

{ ao 2 N is the number of old (duplicate) acknowledgements with sequence
number ssn in the acknowledgement channel;

{ mn 2 N is the number of new (current) messages with sequence number ssn
in the message channel;

{ an 2 N is the number of new (current) acknowledgements with sequence
number ssn�MS 1 in the acknowledgement channel; and

{ ret 2 f0; 1; :::;MRg is the value of the retransmission counter for the cur-
rently outstanding (unacknowledged) message;

so that for a given M 2 V(MS;MR) represented by M
(MS;MR)
(type;ssn);(mo;ao;mn;an;ret)

the marking of places sender state, receiver state, send seq no and recv seq no is
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encoded in the pair (type; ssn) as given by Table 1 and:

M(mess channel) = 1`[(ssn	MS 1)mo ssnmn]

M(ack channel) = 1`[ssnao (ssn�MS 1)an]

M(retrans counter) = 1`ret

Analogously, a shorthand notation is de�ned for arcs in [10].
Sets of markings and sets of arcs are de�ned as follows:

De�nition 6 (Sets of Markings). V
(MS;MR)
(type;ssn) =fM 2 V(MS;MR) j TypeMS(M)

= type;M(send seq no) = 1`ssng represents the set of markings in which the
sender sequence number is given by ssn, and the sender and receiver states and
receiver sequence number are given by the type as speci�ed in Table 1.

De�nition 7 (Sets of Arcs). A
(MS;MR)
(type;ssn) = f(M; (t; b);M 0) 2 A(MS;MR) j

TypeMS(M) = type;M(send seq no) = 1`ssng represents the set of arcs with

source nodes in V
(MS;MR)
(type;ssn) .

3.2 Important Model Properties

There are several important behavioural properties of the SWP CPN model that
are needed for the proof of correctness of the algebraic expressions:

Lemma 2. For all M 2 V(MS;MR), the enabling and subsequent �ring of each
transition is independent of the values of the sequence numbers in the binding.

Sketch of Proof. (See [10] for the full proof.) Proof is from Lemma 1 and the
standard enabling and �ring rules of CPNs [14].

From Fig. 1 the enabling conditions of send mess are: fc(M(sender state)) =
s ready; jM(send seq no)j > 0; and jM(mess channel)j > 0. All three conditions
are independent of sequence numbers. send mess is enabled with binding queue =
fc(M(mess channel)) and sn = fc(M(send seq no)). When send mess occurs, it:

{ Removes 1`s ready from sender state and returns 1`wait ack to this place;
{ Leaves the marking of place send seq no unchanged; and
{ Removes 1`queue from place mess channel and returns 1`queue^̂ [sn] to this
place (append a copy of sn to the end of the message channel queue).

None of these actions depend on or are a�ected by the particular values of queue
or sn in the binding, thus the behaviour of send mess is independent of the values
of the sequence numbers with which it interacts. The same reasoning is used to
prove this lemma for the other seven transitions. ut

Lemma 3. For all M 2 V(MS;MR) in which M(receiver state) = 1`r ready and
jfc(M(mess channel))j > 0, the message at the head of the queue in the mes-
sage channel can always be converted into an acknowledgement, i.e. 9M 0;M 00 2
V(MS;MR) such that M [receive messiM 0[send ackiM 00; jfc(M 00(mess channel))j =
jfc(M(mess channel))j�1 and jfc(M 00(ack channel))j = jfc(M(ack channel))j+1.
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Sketch of Proof. (See [10] for the full proof.) Only reachable markings satisfy-
ing the enabling conditions of receive mess need be considered. For each such
markingM , Lemma 2 ensures that the enabling and action taken upon �ring re-

ceive mess is independent of the values of the sequence numbers involved. When
receive mess occurs from any such M we reach a marking M 0 in which the re-
ceiver state has changed to process and one message has been removed from
the message channel. From the CPN diagram in Fig. 1, each such marking M 0

enables send ack, the occurrence of which leads to a marking M 00 such that the
receiver has returned once again to the ready state, the message channel con-
tains one less message than in M and the acknowledgement channel contains
one more acknowledgement than in M . Thus the lemma is proved. ut

Lemma 4. 8M 2 V(MS;MR), jfc(M(mess channel))j > 0 =) 9M1 2 V(MS;MR)

such thatM [mess lossiM1 and jfc(M1(mess channel))j = jfc(M(mess channel))j�
1 and jfc(M(ack channel))j > 0 =) 9M2 2 V(MS;MR) such that M [ack lossiM2

and jfc(M2(ack channel))j = jfc(M(ack channel))j � 1, while the marking of all
other places remains unchanged.

Proof. The proof follows immediately from the CPN in Fig. 1. ut

4 Algebraic Expressions for the SWP CPN RGs

Empirical evidence gathered in [12] for small parameter values reveals a regular
structure in the RG that is linear in MaxSeqNo and quartic in MaxRetrans. This
also holds true for the model presented in Section 2. Based on the intuition
in [12] for the case where MaxRetrans=0, in this paper, we present an algebraic
formula representing the family of RGs of our SWP CPN and prove it correct.
We then discuss a number of properties that can be proved directly from the
algebraic formula. Because of size limitations, only proof sketches are presented
(see [10] for details).

4.1 The Algebraic Formula in Both Parameters

When de�ning the markings and arcs of OG(MS;MR) we specify sets of markings
and arcs using the notation from De�nitions 5, 6 and 7 and by specifying allow-
able ranges of the �ve variables (mo; ao;mn; an; ret). All variables are assumed
to be greater than or equal to 0, unless otherwise indicated.

All of the markings of OG(MS;MR) are described in this way in Table 2, by
evaluating the expressions in this table for 0 � i � MS. The �rst column gives
the name of the set of markings for each subset of the partition according to
its type. Column 2 de�nes the set of markings by specifying the allowed ranges
of variable values. If a variable is restricted to a speci�c value, e.g. 0, we write
this directly in the label of the marking. Note that because of the expression
0 � mo+ ao �MR� 1, the markings of type 3a and type 4 (rows 4 and 6) are

de�ned only when MR > 0. Hence, V
(MS;0)
(3a;i) = V

(MS;0)
(4;i) = ;; the empty set.
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Table 2. V
(MS;MR)

(type;i) ; for 0 � i �MS and type 2 f1; 2a; 2b; 3a; 3b; 4g.

Name Set De�nition

V
(MS;MR)

(1;i) fM
(MS;MR)

(1;i);(mo;ao;0;0;0) j 0 � mo+ ao �MRg

V
(MS;MR)

(2a;i) fM
(MS;MR)

(2a;i);(mo;ao;mn;0;ret) j 0 � mo+ ao �MR; 0 � ret �MR;

0 � mn � ret+ 1g

V
(MS;MR)

(2b;i) fM
(MS;MR)

(2b;i);(0;ao;mn;an;ret) j 0 � ao �MR; 0 � ret �MR; 0 � mn � ret;

0 � mn+ an � ret+ 1g

V
(MS;MR)

(3a;i) fg; for MR = 0; or

fM
(MS;MR)

(3a;i);(mo;ao;mn;0;ret) j mo � 0; 0 � mo+ ao �MR� 1; 0 � ret �MR;

0 � mn � ret+ 1g; for MR > 0.

V
(MS;MR)

(3b;i) fM
(MS;MR)

(3b;i);(0;ao;mn;an;ret) j 0 � ao �MR; 0 � ret �MR; 0 � mn+ an � retg

V
(MS;MR)

(4;i) fg; for MR = 0; or

fM
(MS;MR)

(4;i);(mo;ao;0;0;0) j 0 � mo+ ao �MR� 1g; for MR > 0.

All of the arcs of OG(MS;MR) are described in Tables 3 to 8 by evaluating
each table for 0 � i � MS. There is one table of arcs per set of markings (i.e.
per row) in Table 2, describing the set of outgoing arcs of that set of markings.

Correspondingly, A
(MS;0)
(3a;i) and A

(MS;0)
(4;i) = ;. The �rst column of each arc table

gives any additional restrictions that must be placed on the variables mo; ao;
mn; an and ret. For example, loss of an old message cannot occur when mo = 0.
The second, third and fourth columns list the source marking, binding element
and destination marking respectively.

We now state the theorem for our parametric RG over both parameters and
prove its correctness.

Theorem 1. For all MS 2 N
+ ;MR 2 N and for Type = f1; 2a; 2b; 3a; 3b; 4g,

OG(MS;MR)=(V(MS;MR); A(MS;MR)) where

V(MS;MR) =
[

0�i�MS

t2Type

V
(MS;MR)
(t;i)

and
A(MS;MR) =

[

0�i�MS

t2Type

A
(MS;MR)
(t;i)

where all nodes and arcs are de�ned in Tables 2 to 8.

Proof. The proof is in two parts. The �rst part proves that all states in V(MS;MR)

are reachable from the initial marking using a connected spanning graph. The
second part proves that every arc from every state in V(MS;MR) leads to a state
in V(MS;MR) and that this set of arcs equals A(MS;MR). The two parts of the
proof each describe a necessary condition, which together are suÆcient to show
that Theorem 1 is correct.
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Lemma 5. Spanning Lemma. For MR 2 N and MS 2 N
+ , and for 0 � i �

MS, and for Type = f1; 2a; 2b; 3a; 3b; 4g, all markings in [t2Type(V
(MS;MR)
(t;i) ) [

fM
(MS;MR)
(1;i�MS1);(MR;0;0;0;0)g are reachable from M

(MS;MR)
(1;i);(MR;0;0;0;0)

Sketch of Proof. (See [10] for the full proof.) Lemma 2 allows this lemma to be
proved directly, for any value of i 2 f0; :::;MSg, rather than inductively over

MS. The marking M
(MS;MR)
(1;i);(MR;0;0;0;0), identical to the initial marking but for

MR old duplicate messages with sequence number MS in the message channel,

is chosen as the starting point, rather than the initial marking M
(MS;MR)
(1;i);(0;0;0;0;0).

This is because, as it turns out, it is easier to show that M
(MS;MR)
(1;i);(MR;0;0;0;0) can

reach all markings in V
(MS;MR)
(1;i) . (Had we started with the initial marking, we

would need to complete a full cycle of the sequence number space in order to get
old messages in the message channel when ssn = 0.)

Application of Lemma 3 MR number of times shows that M
(MS;MR)
(1;i);(MR;0;0;0;0)

can reach all markings in Vspan1 = fM
(MS;MR)
(1;i);(mo;MR�mo;0;0;0) j 0 � mo � MRg.

Then by application of Lemma 4, Vspan1 can reach the markings in

Vspan2 = fM
(MS;MR)
(1;i);(mo0;ao;0;0;0) jM

(MS;MR)
(1;i);(mo;MR�mo;0;0;0) 2 Vspan1;

0 � mo0 � mo; 0 � ao �MR�mog

By a process of simpli�cation of the inequalities in the set de�nition, we deter-

mine that Vspan2 equals V
(MS;MR)
(1;i) (see Table 2).

From inspection of the CPN diagram in Fig. 1,M
(MS;MR)
(1;i);(MR;0;0;0;0) 2 V

(MS;MR)
(1;i)

can reach M
(MS;MR)
(2a;i);(MR;0;1;0;0) via occurrence of send mess, regardless of the value

of i. A similar process is then followed for markingM
(MS;MR)
(2a;i);(MR;0;1;0;0) as was fol-

lowed for M
(MS;MR)
(1;i);(MR;0;0;0;0), to prove that M

(MS;MR)
(2a;i);(MR;0;1;0;0) can reach all other

markings in V
(MS;MR)
(2a;i) . This process continues for the markings in V

(MS;MR)
(2b;i) ;

V
(MS;MR)
(3a;i) ; V

(MS;MR)
(3b;i) and V

(MS;MR)
(4;i) , and for reachability from one set to an-

other. The procedure for determining a spanning of markings in V
(MS;MR)
(type;i) for

type 2 f2a; 2b; 3a; 3bg is slightly more complicated, due to the fact that retrans-
missions can occur from these markings when ret < MR.

Finally, M
(MS;MR)
(1;i�MS1);(MR;0;0;0;0) can be reached from M

(MS;MR)
(2b;i);(0;0;MR;1;MR) 2

V
(MS;MR)
(2b;i) by �ring the receive ack transition. (The MR new messages become

MR old messages because ssn has incremented.) Thus the lemma is proved. ut

Corollary 1. All markings in V(MS;MR) are reachable from M
(MS;MR)
(1;0);(MR;0;0;0;0).

This follows directly from the Spanning Lemma by a trivial induction over MS.

To complete the �nal step in the proof that all markings in V(MS;MR) are
accessible from the initial marking, it is suÆcient to show that the initial marking
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M
(MS;MR)
(1;0);(0;0;0;0;0) can reach one of the markings in fM

(MS;MR)
(1;i);(MR;0;0;0;0) j 0 � i �

MSg. By repeated application of Lemma 5 this can reach M
(MS;MR)
(1;0);(MR;0;0;0;0),

which in turn, by Corollary 1, can reach all markings in V(MS;MR). The marking

M
(MS;MR)
(1;1);(MR;0;0;0;0) is chosen as it is the �rst suitable marking that can be reached

from the initial marking. This is proved in the following lemma.

Lemma 6. M
(MS;MR)
(1;1);(MR;0;0;0;0) is reachable from M

(MS;MR)
(1;0);(0;0;0;0;0).

Sketch of Proof. (See [10] for the full proof.) Proof is by direct inspection of the
CPN diagram in Fig. 1. The initial marking enables transition send mess with

binding <queue = []; sn = 0>. This results in the marking M
(MS;MR)
(2a;0);(0;0;1;0;0).

From this marking, transition timeout retrans can occur consecutivelyMR num-

ber of times. The resulting marking is M
(MS;MR)
(2a;0);(0;0;MR+1;0;MR) in which MR+1

copies of the message with sequence number 0 are in the message channel. From

this marking, receive mess can occur, leading to marking M
(MS;MR)
(3b;0);(0;0;MR;0;MR).

From this marking, send ack can occur, leading toM
(MS;MR)
(2b;0);(0;0;MR;1;MR). The sin-

gle acknowledgement with sequence number 1 is the acknowledgement for which
the sender is waiting. The occurrence of receive ack with binding <queue =

[]; sn = 0; rn = 1; rc = MR> results in marking M
(MS;MR)
(1;1);(MR;0;0;0;0). (Again,

the new messages are now old messages because ssn has incremented.) Thus

M
(MS;MR)
(1;0);(0;0;0;0;0) can reach M

(MS;MR)
(1;1);(MR;0;0;0;0) and the lemma is proved. ut

From Corollary 1 and Lemma 6, all markings in V(MS;MR) are reachable from

M
(MS;MR)
(1;0);(0;0;0;0;0) and Part A of the proof of Theorem 1 is proved.

Part B of the proof of Theorem 1 is proved by the Successor Lemma:

Lemma 7. Successor Lemma. For all MR 2 N, MS 2 N
+ , i 2 f0; :::;MSg

and t 2 f1; 2a; 2b; 3a; 3b; 4g, A
(MS;MR)
(t;i) describes exactly the enabled binding ele-

ments of all markings in V
(MS;MR)
(t;i) and the destination marking of every arc in

A
(MS;MR)
(t;i) is in V(MS;MR).

Sketch of Proof. (See [10] for a full proof.) Lemma 2 allows this lemma to be
proved correct for any value of i 2 f0; :::;MSg. Consider the markings in

V
(MS;MR)
(1;i) de�ned in row 1 of Table 2. From the CPN diagram in Fig. 1 and

standard enabling rules of CPNs [14], all enabled binding elements (and thus
associated arcs) can be identi�ed. The send mess transition is enabled by all

markings in V
(MS;MR)
(1;i) . The mess loss and receive mess transitions are enabled

only by markings in the subset of V
(MS;MR)
(1;i) in which the message channel is

non-empty. The ack loss and receive dup ack transitions are enabled only by the

subset of V
(MS;MR)
(1;i) in which the acknowledgement channel is non-empty. No

other transitions are enabled by any markings in V
(MS;MR)
(1;i) .
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By systematically determining the destination marking for each pair of source

marking and binding element, all arcs with source nodes in V
(MS;MR)
(1;i) can be

determined. For example, the occurrence of transition send mess from marking

M
(MS;MR)
(1;i);(mo;ao;0;0;0) 2 V

(MS;MR)
(1;i) with binding < queue = [(i	MS 1)

mo]; sn = 1 >

leads to a marking M
(MS;MR)
(2a;i);(mo;ao;1;0;0) 2 V

(MS;MR)
(2a;i) , for all i 2 f0; :::;MSg. This

corresponds to row 1 of Table 3. Rows 2 to 5 can be obtained by a similar
procedure for the other enabled transitions.

This procedure can then be repeated for all markings in the other �ve sets
of nodes de�ned in Table 2. This shows that all arcs with source markings in
V(MS;MR) also have destination markings in V(MS;MR) and that these arcs cor-
respond exactly to those de�ned in Tables 3 to 8. Thus the lemma is proved. ut

For all MS 2 N
+ and all MR 2 N, Lemmas 5, 6 and 7 and Corollary 1

show that the markings in V(MS;MR) de�ned by Table 2 correspond exactly to
the markings reachable from the initial marking. Lemma 7 also shows that the
arcs captured by Tables 3 to 8 correspond exactly to the set of arcs with source
markings in V(MS;MR). Thus, for all MS 2 N

+ and all MR 2 N, OG(MS;MR) =
(V(MS;MR); A(MS;MR)) and hence Theorem 1 is proved. ut

The validity of the three assumptions made in Section 3.1 is con�rmed by
the correctness of the algebraic expressions. No marking can be reached that
violates any of the three assumptions, i.e. every marking has channel content of
the form i�j� where i; j 2 f0; :::;MSg and j = i �MS 1, and every reachable
marking can be classi�ed into one of the 6 types in Table 1.

4.2 Analysis Results

Absence of Unexpected Deadlocks. Dead markings can be detected by sub-
tracting from the corresponding set of markings in Table 2 the sets of markings
de�ned as source markings in each table of arcs.

For all MR 2 N and MS 2 N
+ , the dead markings are V

(MS;MR)
dead =

[0�i�MSfM
(MS;MR)
(2a;i);(0;0;0;0;MR);M

(MS;MR)
(2b;i);(0;0;0;0;MR)g. All dead markings occur be-

cause of loss and a bounded retransmission scheme, and all are expected.

Channel Bounds. Channel bounds can be determined by direct examination
of the set de�nitions in the rows of Table 2. Maximising mo + mn gives the
message channel bound for the markings in each row. The message channel
bound of the SWP becomes the maximum of mo + mn taken over all 6 rows.
Similarly, the acknowledgement channel bound is found by maximising ao+ an.
The bound for both channels is 2MR+1, from row 2 (message channel) and row
3 (acknowledgement channel). These bounds are imposed by the SWP itself.

Size of the Reachability Graph. By direct inspection of Table 2 and Tables 3
to 8, Theorem 2 for the size of the RG in both parameters can be proved.
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Theorem 2. For MR 2 N and MS 2 N
+ , the number of nodes and arcs in

OG(MS;MR) is given by

jV(MS;MR)j = ((MS + 1)=6)(5MR4 + 38MR3 + 97MR2 + 100MR+ 36)

and

jA(MS;MR)j = ((MS + 1)=6)(30MR4 + 175MR3 + 306MR2 + 179MR+ 36)

Sketch of Proof. The nodes in V
(MS;MR)
(1;i) and V

(MS;MR)
(4;i) actually form a trian-

gular structure, where the base contains the nodes where mo + ao = MR and
the apex is the node where mo = ao = 0. Using the formula for the nth triangu-
lar number, n(n + 1)=2, for n = MR and n = MR � 1 respectively, we obtain

jV
(MS;MR)
(1;i) j = (MR2+3MR+2)=2 and jV

(MS;MR)
(4;i) j = (MR2+MR)=2, for each

value of i 2 f0; :::;MSg.
The nodes in the other four sets have a more complicated structure. Take

V
(MS;MR)
(2a;i) for example. The structure can be visualised as a succession of tri-

angular structures over mo and ao, one for each value of mn 2 f0; :::; retg. A

summation over 0 � ret �MR obtains jV
(MS;MR)
(2a;i) j = (MR4+8MR3+21MR2+

22MR+ 8)=4. Similar techniques are used to obtain the size of the other node
sets. The total number of markings is given by a summation over all values of
i 2 f0; :::;MSg and the result V(MS;MR) = (MS+1)(5MR4+38MR3+97MR2+
100MR+ 36)=6 is obtained.

Determining the number of arcs requires a more complicated approach. The
number of source markings for which each arc is de�ned is determined for each
row in Tables 3 to 8. To do this in a way that prevents excessively copious sum-
mations, for each row, the number of markings that do not satisfy the conditions
in column 1 of each arc table is determined. This is then subtracted from the
total number of markings de�ned by the corresponding set in Table 2. The to-
tal number of arcs is then the summation over all rows in all arc tables of the
number of arcs de�ned by each row. The result is as stated in the theorem. ut

This theorem con�rms our empirical results for small parameter values and
matches RG size expressions obtained using methods to �t polynomials to data.

5 Conclusions and Future Work

We have proved a theorem which gives an algebraic expression for the in�nite
family of RGs of a parameterised CPN model of the class of Stop-and-Wait
protocols. The parameters, MaxSeqNo and MaxRetrans, are both unbounded
and the protocol operates over a lossy unbounded in-order medium. This is a
considerable advance over previous work [12], which was restricted to the case
where MaxRetrans = 0.

These symbolic expressions can be used for protocol veri�cation. For example,
we have shown how deadlocked states can be identi�ed from the arc expressions
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as those markings that never appear as source nodes. Further, we have shown
that the node table (Table 2) can be used to determine upper bounds on the
channel capacity. This result (2MaxRetrans+1) con�rms that previously obtained
using a hand proof on the CPN in [5,6], but is much simpler (once the algebraic
expressions are known). We have also derived formulae for the number of nodes
and arcs in the state space as a function of the two parameters, proving they
are linear in MaxSeqNo and quartic in MaxRetrans, an interesting complexity
result. Proving language equivalence to a service of alternating send and receive
events [6], as was done in [12] for the restricted case of MaxRetrans = 0, is
currently being undertaken for the general case.

In the future, we would like to automate the procedure for obtaining algebraic
expressions for the RGs of parametric systems based on �nding structural reg-
ularities as a function of the parameters. Our experience with modelling other
systems, including the Capability Exchange Signalling service [18] and TCP's
data transfer service [13], also reveals repeating patterns in their RGs from
which symbolic RGs representing the in�nite family have been obtained. This
provides evidence that our new parametric approach is promising and may be
generalised to a larger class of systems.
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