Verifying Commit-Atomicity using
Model-Checking *

Cormac Flanagan

cormac@cs.ucsc.edu
Department of Computer Science
University of California at Santa Cruz
Santa Cruz, CA 95064

Abstract. The notion that certain procedures are atomic provides a
valuable partial specification for many multithreaded software systems.
Several existing tools verify atomicity by showing that every interleaved
execution reduces to an equivalent serial execution (in which the ac-
tions of each atomic procedure are not interleaved with actions of other
threads). However, experiments with these tools have highlighted a num-
ber of interesting procedures that, although atomic, are not reducible.
This paper presents a more complete technique for verifying atomicity.
Essentially, this technique explores non-serial and serial executions of the
multithreaded system simultaneously to ensure that every non-serial ex-
ecution yields the same final state as the corresponding serial execution.
Using the SPIN model checker, we have applied this technique to verify
the atomicity of a number of irreducible procedures that could not be
handled by previous reduction-based tools for checking atomicity.

1 Multithreading and Atomicity

The development and validation of multithreaded software systems is an impor-
tant yet challenging problem. In particular, standard techniques such as testing
and manual code inspection are often inadequate for multithreaded systems, due
to the large number of possible thread interleavings. Model checking provides
a promising technique for ensuring that a system’s implementation satisfies its
specification under all possible thread interleavings.

A prerequisite of model checking is developing an appropriate specification.
For many interesting software systems, writing a sufficiently-complete specifi-
cation is non-trivial. As an example, consider the filesystem procedure create,
which creates a new file. A specification of the exact effect of create on the
concrete filesystem state would be quite verbose. Alternatively, we could specify
the behavior of create on an abstraction of the filesystem state, but we would
then need an abstraction invariant relating concrete and abstract states, and
such abstraction invariants are also quite complex.

* This work was partly supported by the NSF under Grant CCR-03411797 and by
faculty research funds granted by the University of California at Santa Cruz.

For many multithreaded procedures such as create, the notion of atomicity
provides a lightweight yet valuable partial specification. Informally, a procedure
is atomic if for every (arbitrarily-interleaved) program execution, there is an
equivalent execution with the same overall behavior where the atomic procedure
is executed serially, that is, the procedure’s execution is not interleaved with ac-
tions of other threads. This atomicity guarantee reduces the challenging problem
of reasoning about the procedure’s behavior in a multithreaded context to the
simpler problem of reasoning about the procedure’s sequential behavior. The lat-
ter problem is significantly more amenable to standard techniques such as testing
and manual code inspection. In addition, many programming errors associated
with improper synchronization can be detected as atomicity violations.

We formalize this notion of atomicity by modeling multithreaded program
execution as a transition system and using two transition relations. The standard
transition relation — interleaves steps of the various threads in an arbitrary
manner. The serial transition relation +— also interleaves steps of the various
threads, provided no thread is executing an atomic procedure. Once a thread
enters an atomic procedure, then the serial transition relation executes that
procedure to completion, without interleaved steps of other threads.

Reasoning about program behavior is much easier under the serial seman-
tics (—) than under the standard semantics (—), since each atomic block can
be understood sequentially, without the need to consider all possible interleaved
actions of concurrent threads. However, standard language implementations only
provide the standard semantics (—), which admits additional transition se-
quences and behaviors, and a program that behaves correctly according to the se-
rial semantics may still behave erroneously under the standard semantics. Thus,
in addition to being correct with respect to the serial semantics, the program
should also use sufficient synchronization to ensure the atomicity of each block of
code that is intended to be atomic. That is, for any program execution oy —* o
from the initial state o9 (where, for simplicity, we assume no thread is executing
an atomic block in o), there should exist an equivalent serial execution og —* o.
We call this the atomicity requirement on program executions, and correctly
synchronized programs should satisfy this requirement.

Over the past year, a number of tools have been developed for verifying this
atomicity requirement, using techniques such as theorem proving [11], static
typing systems [9,10], dynamic analysis [8,23], and model checking [13]. All
these approaches are based on reduction, either Lipton’s theory of reduction [16]
or partial order reduction [21].

Reduction suffices to verify the atomicity of many procedures with straight-
forward synchronization, but is often inadequate for procedures that use more
subtle synchronization. This paper introduces commit-atomicity, which is a more
general technique for verifying atomicity. This technique is based on exploring
serial and non-serial executions of the program simultaneously, and checking
that both executions yield the same final state. Commit-atomicity is capable of
verifying the atomicity of many procedures that cannot be handled by existing
atomicity-checking tools based on reduction.

The presentation of our results proceeds as follows. The following section
reviews reduction and provides an illustration of limitations of that technique.
Section 3 introduces a semantics for multithreaded programs that we use as the
basis for our formal development. Section 4 describes our technique for verifying
commit-atomicity during model checking. Section 5 provides an evaluation of this
technique using the SPIN model checker on four benchmark programs. Section 6
discusses related work, and we conclude with Section 7.

2 Reduction

The essential idea behind reduction is to transform an interleaved (non-serial)
execution of an atomic procedure into a serial execution of that procedure by
commuting adjacent actions of concurrent threads. For example, consider the
first execution trace in the diagram below, in which one thread executes a pro-
cedure that (1) acquires a lock m, (2) reads a variable = protected by that lock,
(3) updates x, and then (4) releases m. The execution of this procedure is in-
terleaved with some actions by, by, b3 of a second thread, which do not access x.
Hence, the read and write of x by the first thread commute with the operations
of the second thread. In addition, the acquire operation right-commutes and the
release operation left-commutes with the operations of the second thread, as il-
lustrated by the following diagram. Hence, via reduction, we obtain an equivalent
serial execution with the same final state in which the actions of the procedure
are not interleaved with operations of other threads. Thus, reduction suffices to
prove that the first execution trace is serializable, that is, it has an equivalent
serial trace. If every execution trace through the procedure is serializable, we say
the procedure is atomic.

Reduction example
I 1

acq(m) by rd(z,0) ba wr(z,l) b3 rel(m)
[o1 02 O3 04— 05 o6 o7
3 3 4 AN N\
b1 acq(m) |, rd(x,0) wr(z,1) rel(m) bo , b3
oQ (<] b O3 Ty O5 Og o7

Reduction suffices to verify the atomicity of many procedures that follow
straightforward synchronization disciplines. However, during our experiments
with atomicity-checking tools based on reduction, we repeatedly encountered
procedures that, although atomic, are not reducible. As an example, the proce-
dure acquire shown on the next page uses a combination of busy-waiting and a
compare-and-swap (CAS) operation to acquire a mutually-exclusive lock m (rep-
resented as a boolean). The operation CAS (m,false,r) has no effect and returns
false if m # false. However, if m = false, then the operation CAS(m,false,r)
swaps m and r and returns true.

Procedures acquire and do_transaction
I 1

void acquire() { void do_tramsaction() {
boolean r := true; while (true) {
while (r==true) { acquire(mutex) ;
CAS(m,false,r); int t := data;
} release (mutex) ;
}

// long computation
int fdata := f(t);

acquire (mutex) ;

if (t==data) {
data := fdata;
release (mutex) ;
return;

}

release (mutex) ;

A non-serial execution of acquire is shown in column (a) below, in which
the acquire operation performed by thread T1 is interleaved with an operation of
thread T2 that resets m to false. This execution reduces to the serial execution of
column (b), since the operation of T2 can commute to the start of the execution
sequence, before acquire begins.

Executions of acquire
I 1

T1: acquire() begins T2: m := false T1: acquire() begins

Ti: r := true T1: acquire() begins Tl: r := true

T1l: assume r == true Tl: r := true T1: assume == true

T2: m := false T1: assume r == true T1: CAS(m,false,r) fails

T1: CAS(m,false,r) ok |[T1: CAS(m,false,r) ok |T1l: assume r == true

Tl: assume r != true T1l: assume r != true T2: m := false

T1: acquire() ends T1: acquire() ends T1: CAS(m,false,r) ok
T1: assume r != true
T1: acquire() ends

(a) Non-serial execution (b) Serial execution (c¢) Non-serial execution

Column (c) shows an alternative non-serial execution of acquire in which
the CAS operation initially fails, and the busy-waiting loop iterates until the CAS
operation succeeds. Note that since the execution of column (c¢) contains more
instructions in column (b), we clearly cannot commute the execution of column
(c) into the serial execution of column (b). Thus, even though the execution
of column (c) is equivalent to the serial execution of column (b), in the sense
that both executions yield the same final state, reduction is inadequate to verify

this equivalence. Thus, the procedure acquire is atomic yet not reducible, and
current atomicity checking tools based purely on reduction (using either type
systems [9, 10], dynamic analysis [8, 23], or model checking [13]) cannot verify
the atomicity of acquire. The Calvin-R tool [11] uses a combination of iter-
ated abstraction and reduction to verify such atomicity properties, but requires
additional programmer annotations to “guide” the right abstraction. Commit-
atomicity is intended to verify such atomicity properties automatically.

Another example of an atomic yet irreducible procedure is the procedure
do_transaction shown above. In this example, the global variable data is pro-
tected by mutex, and the procedure do_transaction updates data according to
data := f(data). However, the calculation of f(data) requires a long compu-
tation. To avoid holding mutex while computing f (data), the procedure acquires
mutex, reads data, and releases mutex. The procedure then computes f (data),
and, if data has not changed, updates data with f (data). If data has changed,
then the transaction is retried.

The procedure do_transaction is atomic, in the sense that each execution
is equivalent to some serial execution. However, in every serial execution, the
procedure returns during the first iteration of the loop, but there are many
non-serial executions where the loop iterates many times. Thus, these non-serial
executions cannot reduce to the equivalently-behaved serial executions, and so
reduction is again inadequate to verify the atomicity of do_transaction. In
contrast, commit-atomicity is capable of verifying the atomicity of both of these
irreducible procedures.

3 Multithreaded Programs

To provide a formal basis for reasoning about atomicity, we start by formalizing
an execution semantics for multithreaded programs. In this semantics, a multi-
threaded program consists of a number of concurrently executing threads, each
of which has an associated thread identifier i € Tid. The threads communicate
through a shared store o € Store, and system execution starts in an initial store
0g. The exact structure of the store is left unspecified as it is orthogonal to our
development. The behavior of each thread i is specified by a partial function

T; : Store —e— Store

which performs a single step of that thread.

3.1 Standard semantics

The standard semantics of the entire multithreaded program is defined as a non-
deterministic interleaving of steps of the various threads. The transition relation
o — o' performs a single step of an arbitrarily chosen thread. We use —* to
denote the reflexive-transitive closure of —.

Standard semantics: ¢ — o’
: oc—o it Fe T Ti(o,0) '

3.2 Serial semantics

We assume that each thread in the multithreaded program contains a number
of atomic blocks, and that each atomic block has a particular commit point
where, from the perspective of other threads, the entire block appears to happen
atomically. We assume that for each thread ¢ the function

A; : Store — {Outside, PreCommit, PostCommit}

indicates the phase of thread i, that is, whether thread i is

1. outside an atomic block (OQutside);
2. in the pre-commit phase of atomic block (PreCommit);
3. or in the post-commit phase of atomic block (PostCommit).

This phase information might be determined by examining the program counter
of thread i recorded in the store. We require that no atomic block is active in the
initial state; that the phase of one thread is not affected by step of a different
thread; and that each thread cannot directly transition from the post-commit
phase of one atomic block to the pre-commit phase of a subsequent atomic
block (it must have an intermediate state that is outside any atomic block). We
formalize these requirements as follows:

— A;(0¢) = Outside for all i € Tid.
— if T;(o,0”) then Vj #i. Aj(0) = A;(d’).
— if T;(0,0") then A;(0) # PostCommit or A;(c’) # PreCommit.

The relation A(o) holds if any thread is inside an atomic block:
A(o) 35 e Tid. Ai(o) # Outside

The following serial transition relation — is similar to the standard relation
—, except that a thread cannot perform a step if another thread is inside an
atomic block. Thus, the serial relation +— does not interleave the execution of an
atomic block with instructions of concurrent threads.

Serial semantics: o — o’
! oc—o it Fe Tid (Ti(o,07) AVj # 1. Aj(0) = Outside) !

Reasoning about program behavior is much easier under the serial semantics
(—) than under the standard semantics (—) that is provided by standard lan-
guage implementations. However, a program that behaves correctly according
to the serial semantics may still behave erroneously under the standard seman-
tics. Thus, in addition to being correct under the serial semantics, the program
should also use sufficient synchronization to ensure the atomicity of each block of
code that is intended to be atomic. That is, for any program execution oy —* o
where = A(0), there should exist an equivalent serial execution oy —* 0. We call
this the atomicity requirement on program executions, and correctly synchro-
nized programs should satisfy this requirement. (The restriction —.A(c) avoids
consideration of partially-executed atomic blocks.)

4 Model Checking Commit-Atomicity

In this section, we present an instrumented semantics that detects violations of
the atomicity requirement described above. The instrumented semantics only ad-
mits execution sequences that are serializable, and goes wrong on non-serializable
sequences. To determine whether a given execution sequence is serializable, the
instrumented semantics extends the state space with a shadow store p € State.
Program operations in the pre-commit or post-commit phase of an atomic block
operate as expected on the normal store o, and do not affect the shadow store p.
However, when an atomic block commits, the entire atomic block is executed in
a serial manner on the shadow store. Thus, the shadow store reflects the serial
execution of all commited atomic blocks. The shadow store is used to verify the
serializability of the given execution sequence.

The instrumented transition relation (o, p) = (o/,p’) is defined below. If
no atomic block is executing on the shadow store (that is, =.A(p)), then the
instrumented semantics performs a step of an arbitrary thread on the normal
store. If this step is in the pre-commit or post-commit phase of an atomic block,
then no action is performed on the shadow store, via the rules [PRE-COMMIT] and
[PosT-coMMIT]. However, if the step is the commit action of an atomic block,
then the serial execution of that atomic block on the shadow store is initiated
via the rule [COMMIT]. As expected, commit actions include transitions from the
PreCommit to PostCommit phase of an atomic block. However, commit actions
also include:

— transitions from Qutside to PostCommit, where an action enters and imme-
diately commits an atomic block;

— transitions from PreCommit to Qutside, where an action commits and im-
mediately exits an atomic block; and

— transitions from Qutside to QOutside, where the “atomic block” only contains
a single action.

Instrumented semantics: (o, p) = (0/,p’) and (o, p) = wrong
I 1

[PRE-COMMIT] [POST-COMMIT] [coMMIT)]
—A(p)
T; (07 U/)
-A(p) -A(p) A;i(o) € {PreCommit, Outside}
Ti(o,0") Ti(o,0") A;(c") € {PostCommit, Outside}
Ai(c') = PreCommit A;(c) = PostCommit Ti(p, p')
(0,p) = (o', p) (0.p) = (o', p) (0,p) = (o', p")
[sHADOW] [WRONG]
Ai(p) € {PreCommit, PostCommit} -A(o) -A(p)
Ti(p, p') oFp
@:0) = (0.7) @) = wrong

Once the execution of an atomic block on the shadow store is initiated via
[coMMIT], then the execution of that atomic block continues in a serial (non-
interleaved) manner via the rule [SHADOW] until it completes. Thus, in any reach-
able instrumented state (o, p), the shadow store reflects the serial execution of all
commited atomic blocks. If no thread is currently inside an atomic block (that
is, 7A(0)), then we expect that the operations on the shadow store are a serial-
ization of the operations on the normal store, and hence that o = p. If the serial
execution on the shadow store and the interleaved execution on the normal store
yield different results (that is, o # p), then we cannot verify that the execution
sequence is serializable, and the instrumented execution goes wrong via the rule
[WRONG].

Since atomic blocks are executed in a serial manner on the shadow store, two
threads should never be simultaneously executing atomic blocks on the shadow
store. Hence, we say the shadow store p is well-formed if

Vi, j € Tid.(Ai(p) # Outside N Aj(p) # Outside = i = j)

The following lemma states that the instrumented semantics performs a sequence
of interleaved operations on the normal store, and a sequence of serial operations
on the shadow store.

Lemma 1. If (o,p) =* (¢/,p') and p is well-formed then o —* o' and p —* p’
and p' is well-formed.

Proof We prove the case where (o, p) = (0, p') via a single transition by case
analysis on the transition rule used. This proof generalises to longer transition
sequences by induction.

— [PRE-COMMIT] or [POST-COMMIT]: Since T;(o,c¢’), we have ¢ — ¢’. In addi-
tion, since p’ = p, we trivially have p —* p’ and p’ is well-formed.

— [commiIT]: Since T;(c,0’), we have ¢ — o’. In addition, since —.A(p), we
have A;(p) = Outside for all j € Tid. Together with T;(p, p'), we then have
p — p'. Also from T;(p, p’), we have A;(p’) = Outside for all j # i, so p’ is
well-formed.

— [sHADOW] Since A;(p) # Outside and p is well-formed, we have A;(p) =
Outside for all j # i. Together with T;(p, p’), we then have p — p’ and that
p is well-formed. Finally, since ¢/ = o, we have ¢ —* ¢’.

In addition, the instrumented semantics includes all evaluation sequences
possible under the standard semantics, except that the instrumented semantics
records additional information in the shadow store. We assume that all atomic
blocks terminate, that is, if A;(p1) # Outside then there exists po, ..., p, such
that A;(p,) = Outside and T;(pg, pr+1) for all 0 < k < n.

Lemma 2. If 0 —* ¢’ and atomic blocks terminate then for all well-formed p
there exists p' such that (o, p) =* (o', p).

Proof We first prove the base case where o — o/ via a single transition
because T;(c,c’). The proof then generalises to longer transition sequences via
induction.

— Suppose = A(p) and A;(0’) = PreCommit. In this case (o, p) — (0/,p) via
[PRE-COMMIT].

— Similarly, suppose =A(p) and A;(c) = PostCommit. In this case (o, p) —
(¢’, p) via [POST-COMMIT].

— Suppose —A(p) and neither of the above cases hold. That is, A;(c’) #
PreCommit and A;(0) # PreCommit. Then (o, p) — (o', p') via [cOMMIT],
where T;(p, p').

— Suppose A(p). Then there exists ¢ € Tid such that A;(p) # Outside. Since
atomic blocks terminate, then there exists pa,...,p, such that A;(p,) =
Outside and T;(o, p2) and for all 1 < k < n, we have A;(py) # Outside and
T;(pk, pr+1)- Hence, (o, p) —* (o, pn) via a sequence of [SHADOW] transitions
to a state (o, p,) where —A(p,), and one of the above cases then applies to
this state.

Finally, any instrumented execution that does not go wrong satisfies the
atomicity requirement.

Theorem 1. If 0 —* ¢’ and ~A(c) and —~A(c’) and atomic blocks terminate,
then either

1. o—=*0o', or
2. (o,0) =* wrong.

Proof Since 0 —* ¢/, by Lemma 2 there exists p’ such that (o,0) =* (¢/, p/).
Since atomic blocks terminate, there exists p” such that (¢’, p') =* (¢/,p”) and
SA(p"). If o' # p” then (o, p") = wrong via [WRONG], yielding case 2 of this
theorem. Otherwise ¢’ = p” and o —* ¢’ by Lemma 1, yielding case 1 of this
theorem. O

Thus, given any standard execution og —* ¢’ (where —~.A4(0g) and —.A(c")
and o is well-formed), we can inspect the corresponding instrumented execution
(00,00) = (0’, p’), which must exist by Lemma 2. If this instrumented execution
does not go wrong, then by Theorem 1, we know that the original execution
o9 —* o’ is equivalent to some serial execution oy —* ¢’. Thus, by using model
checking to ensure that no instrumented execution goes wrong, we can therefore
verify that the program satisfies the atomicity requirement.

5 Evaluation

We have applied commit-atomicity to verify several example programs that could
not be handled by earlier atomicity-checking tools based on reduction. This
section presents the example programs we used and reports on the performance
of our verification technique.

5.1 Busy-Waiting Lock Acquire

Our first benchmark uses the busy-waiting lock acquire function described in
Section 2. This benchmark contains an integer variable data protected by the
mutex m. The code for each thread contains a loop that first acquires the mutex,
updates data, and then releases the mutex. Our correctness specification is that
each iteration of the loop should appear to execute atomically (and hence two
threads should never update data at the same time). This correctness of speci-
fication is included in the code via the construct atomic { ... }. We consider
two version of this benchmark in order to calibrate the ability of our technique
to handle large procedures. In the first version acquirel, the critical section
only contains a single line of code, whereas in the second version acquire?2, the
critical section contains 100 lines of code that manipulate data.

Busy-waiting lock acquire benchmark

Variables: Code for each thread:
boolean m; while (true) {
int data; atomic {
acquire(); // see impl in Section 2
Initially:
// critical section
m := false; // read-modify-write data
data := 0;

m := false;

5.2 Dekker’s Mutual Exclusion Algorithm

Our second example is Dekker’s algorithm, a classic algorithm for mutual exclu-
sion between two threads that uses subtle synchronization. The critical section
of each thread updates a shared variable data. Our correctness specification is
that, because the mutual exclusion code is correct, the body of the while loop of
each thread should appear to execute atomically. This specification is expressed
using the construct atomic { ... }.

10

Dekker’s mutual exclusion benchmark

I
Variables:

Thread; : Threads:
while (true) { while (true) {
boolean a;; atomic { atomic {
boolean as; a; := true; as := true;
int data; if (-az) { if (-ay) {
// critical section // critical section
Initially: // read, write data // read and write data
} }
a; := false; a; := false; as := false;
as := false; } }
data := 0; } }

5.3 Transaction Retry

Our third benchmark re-uses the procedure do_transaction from Section 2,
with the requirement that each transaction should be performed atomically.

Transaction benchmark

Variables:

boolean mutex;
int data;

Initially:

mutex
data :

:= false;
0;

Code for each thread:

while (true) {
atomic {

}

do_transaction();

5.4 Bluetooth Device Driver

The Bluetooth benchmark is a simplified model of one of the bluetooth de-
vice drivers in Windows NT described in [22]. There are two dispatch functions
in this simplified device driver: BCSP_PnpAdd and BCSP_PnpStop. The function
BCSP_PnpAdd is called by the operating system to perform I/O in the driver.
The second dispatch function BCSP_PnpStop is called by the operating system to
stop the driver. In our benchmark, one thread calls BCSP_PnpStop, and all the
remaining threads call BCSP_PnpAdd.
Our correctness specification is that each dispatch function should execute
atomically. In particular, each call to BCSP_PnpAdd should either operate nor-
mally or return immediately because the device driver is already stopped.

11

5.5 Experimental Results

We tested each benchmark using various numbers of concurrent threads, as
shown in Figure 1. For each of the five benchmarks, we manually generated
two Promela programs that capture the semantics of the benchmarks under the
standard semantics (—) and instrumented semantics (=), respectively. Figure 1
compares the cost of model checking these benchmarks under these two seman-
tics. For each benchmark/threads/semantics configuration, the figure reports the
size of the reachable state space and the memory and time required for model
checking. An entry of “-” indicates that the SPIN model checker ran out of mem-
ory on that configuration. We performed these experiments under Windows XP
on a 1.7GHz Pentium M laptop with 1GB of memory.

For each variable x in the original program, we declared two variables x
and s_x in the Promela code for the instrumented semantics, to represent the
value of x in the normal store and shadow store, respectively. Thus, the size of
each state in the Promela code for the instrumented semantics is twice as large
as for the standard semantics. In addition to this increase in the size of each
state, the experimental results in Figure 1 indicate that the size of the reachable
state space for the instrumented semantics is significantly larger than for the
standard semantics. That is, the overhead of atomicity checking contributes to
the state explosion problem on these benchmarks. However, commit-atomicity
does provide a means of verifying atomicity in these benchmarks, which could
not be accomplished with previous reduction-based tools. In addition, our results
for the acquire2 benchmark indicate that this technique is capable of handling
moderately-large procedures (in this case containing 100 lines of code).

During our experiments, the bluetooth benchmark initially went wrong under
the instrumented semantics, revealing the same synchronization bug that was
discovered in [22] via an assertion violation. After fixing this bug, none of the
benchmarks went wrong under the instrumented semantics, indicating that all
these programs satisfy their intended atomicity properties.

6 Related Work

Lipton [16] first proposed reduction as a way to reason about concurrent pro-
grams without considering all possible interleavings. Although he focused pri-
marily on checking deadlock freedom, reduction has subsequently been extended
to support proofs of general safety and liveness properties [6, 3,15, 4,19].
Reduction has been applied to verify atomicity in a static type system for
Java programs [10, 9]. This type system for atomicity was inspired by the Calvin-
R [11] static checking tool for multithreaded programs, which relates each pro-
cedure’s specification to its implementation via a combination of simulation and
reduction. The Atomizer is a dynamic analysis tool for detecting atomicity vio-
lations by running an instrumented version of the program [8]. In recent work,
Wang and Stoller [23] also developed several algorithms for checking atomicity
dynamically. The use of model checking for verifying atomicity is being explored

12

Standard semantics (—) |Instrumented semantics (=)
Benchmark |[|Threads| states |space (MB)ltime (s)| states |space (MB)ltime (s)
dekker 2 3104 1.7 0.02 3601 1.8 0.05
acquirel 2 135 1.6 0.02 278 1.6 0.02
acquirel 3 468 1.6 0.02 1795 1.7 0.03
acquirel 4 4361 1.9 0.05 | 20935 3.4 0.16
acquirel 5 16369 6.0 0.15 118242 16.9 0.99
acquirel 6 62806 11.5 0.58 658038 113.4 7.21
acquirel 7 (299952 70.8 4.42 - - -
acquire2 2 3335 1.7 0.03 8278 2.0 0.04
acquire2 3 12864 2.4 0.09 | 58795 5.4 0.24
acquire2 4 153854 45.6 1.32 |714359 96.7 4.91
acquire2 5 1541601 85.3 5.97 - - -
transaction 2 836 1.6 0.02 4730 1.9 0.05
transaction 3 25557 6.0 0.11 |532457 78.1 2.21
transaction 4 826627 99.3 4.68 - - -
bluetooth 2 91 1.6 0.02 116 1.6 0.02
bluetooth 3 568 1.6 0.02 1187 1.6 0.03
bluetooth 4 4762 1.9 0.05 | 16383 3.1 0.09
bluetooth 5 47163 5.2 0.13 |271111 33.1 1.46
bluetooth 6 |527668 48.6 1.79 - - -

Fig. 1. Summary of benchmark programs and model checking performance.

by Hatcliff et al [13], and they present two approaches, based on Lipton’s theory
of reduction and partial order reductions, respectively. Their experimental results
suggest that verifying atomicity via model-checking is feasible for unit-testing.
All of these approaches can only verify the atomicity of reducible procedures,
and thus are insufficient for the examples considered in this paper.

Atomicity is a semantic correctness condition for multithreaded software. It
is related to strict serializability [20], a correctness condition for database trans-
actions, and linearizability [14], a correctness condition for concurrent objects.
It is possible that techniques for verifying atomicity can be leveraged to develop
lightweight checking tools for related correctness conditions.

Many other researchers have proposed using atomicity as a language primi-
tive, essentially implementing the serial semantics —. Lomet [18] first proposed
the use of atomic blocks for synchronization. The Argus [17] and Avalon [7]
projects developed language support for implementing atomic objects. Persistent
languages [1, 2] attempt to augment atomicity with data persistence in order to
introduce transactions into programming languages. A more recent approach to
supporting atomicity uses lightweight transactions implemented in the run-time
system [12]. An alternative is to generate synchronization code automatically
from high-level specifications [5].

13

7 Conclusion

In an effort to avoid errors due to unexpected interactions between concurrent
threads, programmers often design procedures that are intended to be atomic.
Reduction suffices to verify the atomicity of procedures that use straightfor-
ward synchronization, but is often inadequate for more subtle synchronization
disciplines.

This paper introduces a novel technique called commit-atomicity for verifying
atomicity in multithreaded programs. This technique is based on executing serial
and non-serial versions of the programs simultaneously, and checking that both
versions yield the same final state. This technique is capable of verifying atom-
icity of variety of procedures, including procedures that could not be handled
using existing atomicity-checking tools based on reduction.

Commit-atomiciy does introduce a significant model checking overhead. An
important area for future research is the development of hybrid atomicity-checking
tools that use reduction to verify many procedures, but is capable of leveraging
commit-atomicity as necessary to verify procedures that use more complicated
synchronization disciplines.

References

1. M. P. Atkinson, K. J. Chisholm, and W. P. Cockshott. PS-Algol: an Algol with a
persistent heap. ACM SIGPLAN Notices, 17(7):24-31, 1981.

2. M. P. Atkinson and D. Morrison. Procedures as persistent data objects. ACM
Transactions on Programming Languages and Systems, 7(4):539-559, 1985.

3. R.-J. Back. A method for refining atomicity in parallel algorithms. In PARLE
89: Parallel Architectures and Languages Furope, volume 366 of Lecture Notes in
Computer Science, pages 199-216. Springer-Verlag, 1989.

4. E. Cohen and L. Lamport. Reduction in TLA. In Proceedings of the International
Conference on Concurrency Theory, volume 1466 of Lecture Notes in Computer
Science, pages 317-331. Springer-Verlag, 1998.

5. X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-based specification, syn-
thesis, and verification of synchronization in concurrent programs. In International
Conference on Software Engineering, pages 442—-452, 2002.

6. T. W. Doeppner, Jr. Parallel program correctness through refinement. In Proceed-
ings of the ACM Symposium on the Principles of Programming Languages, pages
155-169, 1977.

7. J. L. Eppinger, L. B. Mummert, and A. Z. Spector. Camelot and Avalon: A
Distributed Transaction Facility. Morgan Kaufmann, 1991.

8. C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for mul-
tithreaded programs. In Proceedings of the ACM Symposium on the Principles of
Programming Languages, 2004.

9. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proceedings
of the ACM Conference on Programming Language Design and Implementation,
pages 338-349, 2003.

10. C. Flanagan and S. Qadeer. Types for atomicity. In Proceedings of the ACM
Workshop on Types in Language Design and Implementation, pages 1-12, 2003.

14

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. N. Freund and S. Qadeer. Checking concise specifications for multithreaded
software. In Workshop on Formal Techniques for Java-like Programs, 2003.

T. L. Harris and K. Fraser. Language support for lightweight transactions. In
Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 388-402, 2003.

J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifications for concur-
rent object-oriented software using model-checking. In Proceedings of the Inter-
national Conference on Verification, Model Checking and Abstract Interpretation,
2004.

M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems,
12(3):463-492, 1990.

L. Lamport and F. B. Schneider. Pretending atomicity. Research Report 44, DEC
Systems Research Center, 1989.

R. J. Lipton. Reduction: A method of proving properties of parallel programs.
Communications of the ACM, 18(12):717-721, 1975.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus. In
Proceedings of the Symposium on Operating Systems Principles, pages 111-122,
1987.

D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. Language Design for Reliable Software, pages 128-137, 1977.

J. Misra. A Discipline of Multiprogramming: Programming Theory for Distributed
Applications. Springer-Verlag, 2001.

C. Papadimitriou. The theory of database concurrency control. Computer Science
Press, 1986.

D. Peled. Combining partial order reductions with on-the-fly model-checking. In
D. Dill, editor, Proceedings of the IEEE Conference on Computer Aided Verifi-
cation, Lecture Notes in Computer Science 818, pages 377-390. Springer-Verlag,
1994.

S. Qadeer and D. Wu. Debugging concurrent programs with sequential analysis.
2003. Submitted for publication.

L. Wang and S. D. Stoller. Run-time analysis for atomicity. In Proceedings of the
Workshop on Runtime Verification, volume 89(2) of Electronic Notes in Computer
Science. Elsevier, 2003.

15

