A Methodology for Model-checking Ad-hoc
Networks

Irfan Zakiuddin', Michael Goldsmith??, Paul Whittaker?, and Paul Gardiner

1 QinetiQ, Malvern, UK,
I.Zakiuddin@Qeris.QinetiQ.com,
2 Formal Systems (Europe) Ltd.
{michael,paulw}@fsel.com,
WWW home page: http://www.formal.demon.co.uk
3 Worcester College, University of Oxford

Abstract. Wireless networks, specifically ad-hoc networks, are char-
acterised by rapidly changing network topologies. Their dynamic na-
ture makes it a challenge to design and assess protocols for such net-
works. We present a methodology, based on CSP and the FDR model-
checker, to validate critical properties of such networks, properties like
self-stabilisation. Our work started by applying CSP/FDR to a tacti-
cal internet (a military mobile network). The techniques developed there
were generalised to our methodology for model-checking ad-hoc networks
and more general self-configuring systems. We first give an overview of
the results of model-checking the tactical internet, then we describe the
methodology on an ad-hoc network case study, namely the Cluster-Based
Routing Protocol. The methodology is quite generic, but it enables the
complex dynamic properties of ad-hoc networks to be captured quickly
and easily, in models that are ususally readily tractable. We end with a
brief discussion of some of its other applications.

1 Introduction

The ARPANET bug [1] showed how critical it is to design correct networking
protocols. There, one faulty router issued a few corrupt topology update mes-
sages before crashing, and that was sufficient to livelock the entire ARPANET.
To break the livelock, every single router in the ARPANET had to be man-
ually re-booted. The problem was that the network management protocols in
the ARPANET were not self-stabilising. Perlman [1] defines a network as self-
stabilising when, after some fault, it is able to return to a normal state in a
‘reasonable’ amount of time, without human intervention. She also requires that
the fault does not recur. Perlman’s notion of self-stabilisation is related to Dijk-
stra’s [2], but is more informal and focused on networking protocols. Her more
pragmatic notion served as a useful starting point for our investigations.
Modern networks are increasingly mobile, using wireless communications. An
extreme class are Mobile Ad-hoc NETworks, MANETS, [3], which do not even
rely on a fixed infrastructure to serve nodes that are potentially moving very

fast. Rather, a MANET is required to form and maintain itself spontaneously.
Self-stabilisation for these networks is particularly challenging. Protocols for
MANETSs are prone to get caught in a cycle of perpetual self-configuration -
even in the absence of faults, and merely as a consequence of a dynamic topol-
ogy.
This paper describes work done at QinetiQ (formerly part of DERA) and
Formal Systems (Europe) Ltd, to apply CSP and FDR [4] to study protocols for
self-configuring networks. The driving case study for that work was a ‘tactical
internet’; in effect this is a MANET for deployment in the theatre of battle.
Studying the tactical internet produced techniques of significant interest and
value. However, the tactical internet is commercially confidential (not to mention
its military sensitivity!). To further advance the techniques and to enable their
exposure we applied them to some public domain systems, viz:

— the Cluster Based Routing Protocol (CBRP) [5], which is a MANET
— Mobile IP

These studies yielded, in effect, a methodology for model-checking ad-hoc net-
works, and more generally for self-configuring systems. Further use was made of
this methodology in our wider research work on:

— a self configuring key hierarchy, for group key management, [6]
— a link reversal routing algorithm, for MANETS.

And these various items confirmed to us the value and the interest of our ap-
proach. The methodology derives its power from flexible and simple concepts,
which are supported by CSPjs’s powerful programming capabilities.

Of course our models are limited to a small finite number of principals, typi-
cally about 5, but this is often sufficient locate undesirable behaviour. To verify
systems like these, with a model-checker, requires some form of inductive reason-
ing. In a CSP and FDR context, they will typically be based on data independent
induction, [7]. Techniques for data independent induction establish the base and
step case for infinitely many inductions, at the same time. In effect, results are
proved for an unbounded number of principals.

The methodology we present is intended as a precursor to the use of data
independent induction. It enables the complex interactive behaviour of these
dynamic systems to be captured in models that are tractable and easy to create.
These models can then be the basis for subsequent inductive reasoning.

The rest of this paper presents an overview of modelling the tactical inter-
net, and the results achieved. We then discuss the general methodology before
illustrating it with its application to CBRP. The conclusion discusses some of
the other applications, very briefly.

2 Applying CSP/FDR to a Tactical Internet

2.1 The First Attempt

We had access to descriptions of a tactical internet technology; this was being
developed by a leading networking firm and it was tendered as one component

of the UK Army’s next generation communications system. The technology was
required to create and to maintain a radio network across highly mobile nodes,
in another words it was a MANET.

The descriptions covered various aspects of the network, but of greatest in-
terest, to us, were the networking protocols. Our first attack on the problem was
to code the networking protocols in CSP)ys. This was challenging because the
descriptions available were somewhat incomplete. Nevertheless, we were able to
produce CSPys models of the system. The models were, in essence, a direct trans-
lation, of the networking protocols. Of course, data types were limited to small
finite types and continuous parameters were discretised to small finite ranges,
but, apart from that, not much abstraction was applied. As such, we created
high fidelity models of the system.

Unfortunately, the state space of these models was too large to perform much
meaningful analysis. While FDR is equiped with a number of state reduction
operators [4], these were not able to improve matters significantly. The models
of the networking protocols were simply too complex.

2.2 Results with Abstract Models

While the high fidelity models were being developed, another thread of work
had been studying routers exchanging link state data. Link state routing is one
of the major types of routing protocol [1]. In a link state protocol, each router
maintains a database of the state of all links in the network.

To study link state routing CSPj, was used to describe link state routers, in a
network of variable topology, trying to agree on the network topology. This work
was the basis for the CSP)s specifications of self-stabilisation described below.
These models were very abstract; they did not attempt to model any specific
protocol. Instead, they simply had routers exchanging time-stamped information
about the state of specific links.

The tactical internet used link state routing protocols which were closely
related to IP standards. Some state changes, in its networking protocols, were
decided according to nodes’ views of the network topology. It was possible to
upgrade our CSPj; models of routers with a representation of some of these node
states. In effect, this yielded an abstract model of aspects of the tactical internet’s
functionality. Analysing these models proved to be interesting, it showed that
the network could partition itself, furthermore some partitions could fail to be
detected - some of these behaviours were not at all obvious. We discussed this first
phase of the work with the designers of the tactical internet. These behaviours
were known to them (in fact an extra layer of protocol coped with some of them),
but they were impressed by an automated capability to find protocol flaws and
they were very positive about this work. Thus the primary benefit of this phase
was to provide us with an encouraging proof-of-concept.

We had found that the high fidelity models were largely intractable, and that
starting with very abstract models (of routers exchanging link state data) and
adding selected features was promising. This led us to model the mobile network,
as a whole, at an abstract level. The essential idea behind the abstraction was to

represent a sub-protocol, which caused a set of nodes to change their states with
a single CSP event. Such events are synchronised across nodes and they change
the nodes’ states according to the effects of the sub-protocol. In essence, nodes
are given the capability to update states of other nodes directly. This modelling
was the basis for the powerful and generic techniques discussed in Section 4,
below.

The more abstract modelling started with the simplest possible representa-
tion of the substates of a node, with single events controlling transitions between
substates. This model was refined incrementally, the pattern was that an abstract
CSP network model would be found to have some CSP divergence (some cycle
of internal events). This corresponded to the potential for part of the network
to continually re-configure itself. This is a type of self-stabilisation failure, and
it could be removed by refining the model by adding more system features.

This type of modelling soon developed into an interesting analysis. The mod-
els were gradually refined to contain a representation of most of the networks
behaviour. In these quite rich models FDR found complex configurations of net-
work topology and node state, which in conjunction could cause the network to
perpetually re-configure itself.

Figure 1, attempts to give a flavour of the type of behaviours found by FDR
in our models of the tactical internet. Each node decides its state change on the
basis of:

— its own state
— the state of its neighbours
— its knowledge of the network topology

C

Fig. 1. Simple example of cyclic re-configuration in a MANET

In effect FDR explores all possible combinations of these factors, which can
lead either to cycles of re-configuration, or to the network configuring itself
incorrectly (see section 5.3). In our simple example, the nodes in state White
decide, on the basis of the above factors to change to state Black; and vice-
versa. The result is a global configuration that is symmetric to the previous
state. Each node, will then make corresponding state changes that return the
network to the original configuration, and so on.

The result of this modelling was to identify the need for a number of ran-
domising elements in the network specification. Certain state changes in the pro-
tocols were guarded by a randomised delay. These delays were found at a few,
very select, places in the network description. Initially, we simply ignored them,
we could not guess their purpose. However, as our abstract models developed,
we found that these randomising elements were necessary to preclude possibili-
ties of perpetual re-configuration, such as alluded to by our fig 1. Returning to
our example, if either pairs of nodes A and C, or B and D are forced to wait a
random amount of time, before changing their states, then the simultaneity that
engenders the cycle is broken.

We subsequently discovered that using a randomised delay is a standard
technique for avoiding these potential self-stabilisation failures. However, finding
the very select places to put these randomised delays is difficult. Current methods
are based on a combination of expertise and extensive simulation.

2.3 Using Parallel FDR

The main aim of this paper is to present the abstract modelling techniques, but
in this subsection we note how we were later able to make progress with the high
fidelity models. During the project we had contacts with Jeremy Martin, then
at the Oxford University super-computing centre. He had been experimenting
with parallelising FDR and he was subsequently very successful in completing a
full parallel implementation of FDR [8].

On the high fidelity models this more powerful verification engine yielded,
as expected, a more detailed analysis of self-configuration problems. In fact,
most of these were complex transient states that the network could find itself in,
due to nodes having stale information about the network. Unfortunately, it is
not possible to discuss these behaviours without exposing sensitive information
about the tactical internet.

3 Principles of the Methodology

The methodology for modelling mobile networks, that was inspired by the tacti-
cal internet study, is simple in concept and powerful in applicability; it also has
the benefit of not suffering, very much, from the state explosion. The driving
idea is to capture the states of the system’s components simply and then to map
interactions between components onto their states. The methodology depends
on two features of CSPjy, viz.:

1. CSPy’s programming support for renaming processes through a relation -
this is used to program the way nodes interact.

2. CSP’s, hence CSPy;’s, model of shared event communication - this is used
to implement interactions between nodes in our models.

Renamings are a very powerful programming construct in CSPys. If P is
a process and R is a relation on sets of events, then renaming P through R,
written P[[R]], maps P to its relational image under R. So, if @ is one of the
events performed by P, then P[[R]] will offer the external choice of all the events
in {z | aRz}, instead of a. Furthermore, if a set, F, of events are renamed, by
R, to the single event e, then the occurrence of e in P[[R]] corresponds to the
non-deterministic choice of the E-events in P. In general, events can be renamed
in many ways and in this work we primarily use one-to-many renamings.

CSP uses a handshake model of communication. If processes P and ¢ com-
municate on an event a, then both P and @ perform a single a together. Fur-
thermore, communication is multiway, so many processes can synchronise on
events in the same way as two processes.

The methodology has three parts:

1. The local view. The base of the model are CSP); processes that capture the
state transitions of the units of the subject; crucially this includes processes
for links as well as nodes. These basic processes only capture local states and
state transitions.

2. Promoting local to global. The CSPj; renamings that map interactions
onto the states of the basic processes. In other words the local states of the
node and link processes are promoted to the ways they can affect each other.
In effect renamings promote a local view to a system view.

3. Specifying properties. In FDR properties are also specified in CSPy,,
but CSP has no built in notion of time or temporality. Nevertheless, we
require our subjects to be eventually ‘correct’ (cf. Perlman’s notion of self-
stabilisation). In fact, we can code the requisite properties of eventual ‘cor-
rectness’, quite elegantly, in CSP.

An important part of our approach is to condense as much protocol as possible
into a single shared event. It is also important to make the ‘local view’ processes
as simple as possible. Clearly, the extent to which this is possible will vary from
problem to problem, and it will also vary according to the skill of the CSPys
programmer. To illustrate the three parts of the methodology on CBRP we first
need a brief description of it.

4 A Short Description of CBRP

The Cluster-Based Routing Protocol [5] is a networking and routing protocol
designed for use in MANETSs. It uses distributed algorithms to organise nodes
into clusters. Each cluster has one, and only one, head, and a number of member
nodes. Thus the states of a node are either a cluster Head, or a cluster Member,

but, in certain circumstances, a node can have a third Undecided state, before
deciding to become a Head or a Member. The clusters are identified by the ID
of their Head, and a node is deemed to be a Member of a cluster if and only if
it has a bidirectional link to the Head. So a node can be a Member of several
clusters simultaneously.

Nodes detect the presence of other nodes and organise themselves into clus-
ters by using regular broadcasts known as ‘HELLO’ messages. These are period-
ically broadcast from each node. As a node receives these messages, it builds up
a table of the nodes which it is able to hear, and the state of these neighbour-
ing nodes (i.e. Head, Member, or Undecided). The HELLO messages are made
up of the state of the broadcasting node together with the neighbour table. By
observing whether or not its own ID appears in a neighbour table, a node can
determine whether it has a unidirectional or a bidirectional link the sender of
the HELLO message.

Cluster formation is also centred around the HELLO messages. Initially, all
nodes are in the Undecided state, and all nodes commence their HELLO message
broadcasts. A timer is also started at each node. If a node receives a broadcast
from a Head before the time-out, then it becomes a Member. If it times out with-
out hearing such a broadcast, then it can automatically go from the Undecided
to Head. If several non-Head nodes are in bidirectional contact with each other,
then the node with the lowest ID becomes the Head. To assist nodes in moving
from Undecided to Member, a Head node will, in addition to its periodic broad-
casts, send out a triggered HELLO message whenever it receives a broadcast
from an Undecided node. Once all nodes are in either Head or Member states,
cluster formation is complete.

CBRP is intended for operation in a dynamic environment and the network of
clusters must be maintained as connectivity changes; thus nodes states are also
liable to change, as radio connectivity changes. Cluster maintainence follows
much the same pattern as cluster formation. If a Member node loses its last
bidirectional connection to a Head node, then it will revert to the Undecided
state and follow the initial procedure. Also, if a Head gains a bidirectional link
with another Head, for longer than a predetermined length of time, then the node
with the lower ID remains a Head, and the other becomes one of its Member
nodes. Furthermore, if several non- Head nodes come into contact with each other,
then the node with the least ID in the peer group becomes a Head.

Let us note that network formation and maintenence in CBRP is rather
simpler than in the tactical internet. For instance, in CBRP state changes in
a node are decided by its own state and that of its peer group; but in the
tactical internet, a node’s knowledge of the network topology is an additional
factor in nodes deciding state changes. The motivation for creating the clusters
is to support efficient routing; but we are not going to discuss that, instead we
will concentrate on how our methodology enables us to model CBRP’s dynamic
cluster formation and maintenence.

5 Modelling CBRP

We are now ready to describe how CBRP can be modelled. Abstraction is an
important part of our methodology; modelling CBRP starts with the following
abstractions:

— We assume that links are always bi-directional (this can easily be rectified,
but our presentation will make this assumption).

— We do not store and communicate the neighbour table, but it is possible to
access neighbour information implicitly, through the link processes.

— We make a node always receptive to any communication that will change its
state (instead of modelling the time triggered and event triggered broadcast
of ‘HELLO’ messages).

5.1 State Transitions of the Basic Processes

The Basic Node. A node will have a number of states. In the case of CBRP,
these states are Head, Member and Undecided; so we have the CSPys type dec-
laration:

datatype NodeState = Head | Member | Undecided

The basic node process is parameterised by the current NodeState. It performs
two types of event: the stay event identifies the current state the node is in,
and it does not change the node’s state; with a move event the node changes its
state, and the event carries its current state and its new state (the diff function
is simply set difference).

channel stay : NodeState
channel move : NodeState. NodeState

BASICNODE(current) =
stay.current — BASICNODE (current)
O

move.current?new : diff (NodeState, { current}) — BASICNODE (new)

The Basic Link. We capture a lot of interesting dynamic behaviour by having
a simple two state process for a link, these states are Up and Down. Transition
between these two states is controlled by the make and break events and linkstate
events report whether the link is Up or Down.

channel make, break
channel linkstate : LinkState

BASICLINK =
let

DOWN =

make — UP
O
linkstate.Down — DOWN
UP =
break — DOWN
O
linkstate. Up — UP
within
DOWN

BASICLINK has UP and DOWN as its local states, with DOWN being the
initial state.

BASICNODE and BASICLINK are the fundamental units of the system’s
model; but to build the model these processes need to interact and the node and
link identifiers need to be added. The interactions are programmed by renaming
the basic processes according to the ways they can affect each others state, and,
as such, these renamings also carry the node and link identifiers. The interactions
are then implemented by making the renamed CSP); processes communicate.

5.2 Renaming and Connecting Processes

Renaming and synchronisation are used to create the model of the network in a
number of ways and the principal techniques are summarised here. We assume
that nodes are named A, B, etc. and that this defines the type Nodeld. Elements
of this type are ordered alphabetically. We can then identify a link by the pair
of nodes it connects, viz.: {4, B},{B, D}, etc.

Causing State Changes. A local event can be renamed to a cause of a state
change, in another node. The local event will typically capture the local state of
the node. In the CBRP example the stay.z event, in the BASICNODE, is re-
named to cause all state changes that are a consequence of state z. For instance,
suppose we want to program the way a node, A, can affect other nodes when it
is a Head. For this we use the channel:

channel announce : NodeState. Nodeld

to rename stay.Head to announce.Head.A, in the code for node A. But to com-
plete mapping the effects of a node being a Head we need to make local state
changes, in other nodes, receptive to all events of type announce.Head.

Allowing Local States to be Changed. A local state change is marked by
the appropriate event and this event must be renamed to allow other nodes to
activate the state change. So if a node, B, is Undecided, then it will become a

Member when its link with a Head node becomes Up. To implement this the
move. Undecided. Member, in node B, has to be renamed to:

{announce.Head.z | © € diff (Nodeld,{B})}

To iterate, applying this renaming means that in node C' the external choice of
both the above events will be offered. So in the Undecided state C' will synchro-
nise with either announce.Head.A or announce.Head.B to become Member.

Modelling Synchronised Broadcast. Network connectivity is another factor
in deciding how nodes affect each other and this determines the various ways
the BASICLINK process (or its analogue) is renamed.

To continue our example of the interactions between Head and Undecided
nodes, to allow A to broadcast that it is a Head all links in the set:

{{A,n} | n € diff (NodeId, {A})}

will have their linkstate.Up event renamed to announce.Head.A. This in re-
naming, in conjunction with the two former renamings, allows a Head node to
change all Undecided nodes, of lower id, into Member. In effect we have imple-
mented a synchronised broadcast by parameterising the announce.Head event
with only the sender.

Modelling Pointwise Interactions. Undecided nodes also broadcast their
state to solicit a respose from a neighbouring Head; the response is, in effect,
a point-to-point communication. To model the reponse from a Head, we need a
new channel:

channelpt2pt : Sender.Receiver. NodeState

where both Sender and Receiver are equal to Nodeld. Taking the instance where
A is Head and B is Undecided, renaming each of:

— stay.Head in the process for node A4,
— move. Undecided. Member in the process for node A,
— linkstate.Up in the process for link {4, B}

to pt2pt.A.B.Head, will implement this part of the protocol. In general pointwise
interactions are modelled by parameterising the ‘global view’ event with both
sender and receiver.

Note that the sub-protocol we have described is condensed into the single
pt2pt event. Finally, note that the Undecided broadcast does not cause any
node’s state to change and an Undecided node is always receptive to a change
to Member by a pt2pt event. This means we can omit the Undecided broadcast
and condense this sub-protocol into the single pt2pt event.

Capturing Effects of Losing Connectivity. The renamings we have dis-
cussed above have depended on links being Up. We can capture the consequences
of loosing connectivity with renamings as well, here are two brief examples.

When a Member, say C, loses its last link to a Head it becomes Undecided.
This can be implemented by declaring:

channel losehead : Nodeld

and renaming C’s move.Member.Undecided event to a losehead.C event. Also
all linkstate.Down events in C’s links must be renamed to the same losehead
event. Thus if node C is a Member and it has lost all its links to its Head’s,
then it will synchronise on a losehead event, with its link processes, to become
Undecided.

The linkstate.Down event can also be used to simulate a timeout. If an
Undecided node does not get a link to a Head, then it times out and becomes a
Head. Maintaining our nomenclature, if the move. Undecided.Head event is also
renamed to losehead.C, then this will synchronise with the losehead.C events in
C’s links to make C a Head.

Using Multiway Synchronisation. Multiway synchronisation can be used to
condense a complex interaction across nodes into an atomic global state tran-
sitions. In the case of CBRP, multiway synchronisation can be used to model,
with a single transition, when a group of mutually audible Undecided’s elect the
one with the lowest ID as a new Head, while the rest become its Member.

One might imagine that this would require accumulating state at each node
to make this decision. However, the flexibility of synchronisation in CSP allow
this to be achieved in a single multi-way communication; but this multiway
communication involves not only the nodes in the connected component of the
network in question, but those isolated from it as well.

When a link is Down, the link process prevents its nodes from being elected,
but it permits any other node to be made the Head. When the link is Up, the
nodes, at the end of the link:

— prevent any election, when they are Head;
— allow themselves or nodes of lower id to be elected, when they are Undecided;
— block the election of any higher ID, when they are Undecided.

Now, when the intersection of all of these sets is calculated, by the semantics
of parallel composition, the result is the singleton contain the lowest ID of the
peer group. Thus each Undecided node is left with a single possibility : if its ID
is the one in the singleton, then it becomes Head; but if its ID is higher than
the chosen one, then it becomes a Member.

Exposing State for Property Checking. Finally, the connection between
this step of the method and the last step is to expose the state of nodes at the
global level. This enables the specifications, described in section 5.3, to be coded

and model-checked against. For this we need the channel:
channel report : Nodeld.NodeState

In each node the stay event is renamed to the report event. Thus in node A,
stay.x is renamed to report.A.x.

With our model of CBRP (or whatever self-configuring system we happen to
be studying) complete, we need the last step of our methodology: a formalisation
of the properties it must satisfy.

5.3 Specifying and Checking Properties

FDR is a refinement checker, it checks whether one CSP)s process, the specifica-
tion, or SPEC is refined by another, the implementation, or IMP. Refinement is
with respect to one of the (three most common) denotational semantics of CSP,
viz. traces, failures and failures-divergence. And to say that IMP refines SPEC
simply means that the denotational value of IMP is a subset of the denotational
value of SPEC.

We want to check that our system will always terminate its self-configuration,
resulting in a ‘correct’ state. In effect, the CSP), specification must capture the
following:

— The self-configuration terminates.
— The resulting distributed state of the system is ‘correct’.

But to prevent FDR stopping a check when the system reaches a transient bad
state, the specification must also:

— Permit the system to be in an incorrect state prior to the self-configuration
terminating.

FDR establishes the refinement relationship by comparing the operational forms
of SPEC and IMP - which are labelled transition systems. Operational states
are either unstable - in which case they can perform hidden events, or they are
stable - in which case they only do visible events. To verify a failures-divergence
assertion:

1. FDR checks unstable states of IMP for cycles of hidden events, namely
divergences that are disallowed by SPEC’s unstable states.

2. FDR checks that the stable states of IMP can refuse no more than SPEC’s
stable states.

Now consider the following CSP process:
SPEC = right — SPEC O (STOP M wrong — SPEC)

This process:

1. is divergence free, or simpy there is no cycle of hidden events.
2. it only refuses wrong events.
3. it will permit wrong events to occur.

In a node only the report events are visible, all self-configuration events are
hidden, thus a divergence, in IMP, corresponds to a failure to stabilise. Further-
more, right and wrong events are mutually exclusive subsets of the report events.
SPEC allows right and wrong events in unstable states and only right events
in stable states. Checking that the refusals of stable states are no more than all
wrong events corresponds to requiring that every single right event is allowed
in the stable states. A stable state is one in which no further self-configuration
is possible, so self-configuration must terminate in states where all reports are
everything right. So to establish the failures-divergences assertion:

SPEC Crp IMP

IMP must always eventually terminate its self-configuration in the right state.
In fact, using this style of specification requires additional finessing by making
the SPEC insensitive to the topology changing events. But with that done a
wide range of properties can be verified of a model, for CBRP these include:

— no node is left in the Undecided state,
— every connected component has a Head.

6 Conclusions

We have dicussed work that we did to model and analyse a tactical internet
using CSPy and FDR. And we have described the methodology for modelling
ad-hoc networks and self-configuring systems, that were inspired by the tactical
internet work. The methodology allows tractable models of complex dynamic
behaviour to be created quickly and easily. It is our belief that the power of this
methodology depends on a combination of the simplicity and flexibility of the
fundamental processes (section 5.1) and the powerful programming constructs
supplied by CSPy;, primarily the renamings (section 5.2). This is confirmed by
our experience with these techniques on other problems.

For instance, to model the use of mobile IP in partitionable networks, the
basic concepts clearly apply, with appropriate changes. So the BASICNODE
process has to be tailored for each of the participants, viz: the mobile agent,
the home router, the remote host and the message; but it is very similar to
what we have described here. The partitionable connectivity can be captured by
having a BASICLINK -type process for each partition. The interactions between
these fundamental process is mapped onto them by the appropriate renaming
relations. Coding a property, such as a message must always reach the mobile
agent, requires an eventual settling specification (section 5.3). Model-checking
then shows how a partition can make a message bounce between the home router
and a formerly occupied remote host.

We also found this approach very useful when modelling the self-configuring
key hierarchy of [6] (this could be regarded as an ad-hoc key hierarchy). There a
group of nodes maintain a key hierarchy without a central server; the hierarchy
re-configures itself as the group partitions and as partitions heal. Once again
processes very similar to the BASICNODE and BASICLINK are very useful.
They model the state transitions of groups of nodes and group keys. In the
protocol, the groups of nodes and the group key processes must interact as the
connectivity varies and the appropriate renaming relations can capture these
interactions. The result is an elegant and efficient model that captures the full
dynamic behaviour of the protocol.

With regards to related work, in this broad area we are only aware of Khur-
shid and Jackson’s work on [9], but that is not closely related to this work. As far
as we are aware there is not much work applying model-checking to MANETS.
We feel this work is also interesting because model-checking applications of this
sort are uncommon.

7 Acknowledgements

The authors would like to thank Will Simmonds, Nick Moffat and Sadie Creese
for helpful comments on drafts of this paper.

References

1. Perlman, R. Interconnections: Bridges, Switches and Routers. Addison-Wesley,

1999.

http://wwu.cs.uiowa.edu/ftp/selfstab/bibliography/

http://www.ietf.org/html.charters/manet-charter.html

Roscoe, A.W. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

http://www.comp.nus.edu.sg/ tayyc/cbrp/

Rodeh, O., K.Birman, D.Dolev. Optimized Group Rekey for Group Communication

Systems. Network and Distributed System Security, 2000.

7. Creese, S. Data Independent Induction : CSP Model-checking of Arbitrary Sized
Networks. DPhil thesis, University of Oxford, Compting Laboratory, 2001.

8. Martin, J., M.H.Goldsmith, et al. Parallel FDR. Formal (Systems) Europe Ltd.
Technical Report, forthcoming.

9. Khurshid, S., D. Jackson. Exploring the Design of an Intentional Naming Scheme
with an Automatic Constraint Analyzer. Proc. 15th IEEE International Conference
on Automated Software Engineering, Grenoble, France, September 2000.

O Ot W

A A Short Introduction to CSP
This appendix gives a brief summary of the CSP operators used in the text.
In practise modelling is done in CSPjs, which is a machine readable version of

CSP, embedded in a full functional programming language.

a — P This process performs event a, then proceeds according to process P.

P O @ The external choice of P and @, the environment chooses from the
initials of P or of Q.

P M @ The non-determinstic (or internal) choice between P and . The envi-
ronment is offered either the initials of P or of Q.

