Distributed Explicit Fair Cycle Detection

Ivana Cernd and Radek Peldnek *

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
{cerna,xpelanck}efi.muni.cz

Abstract. The fair cycle detection problem is at the heart of both LTL and fair
CTL model checking. This paper presents a new distributed scalable algorithm
for explicit fair cycle detection. Our method combines the simplicity of the dis-
tribution of explicitly presented data structure and the features of symbolic algo-
rithm allowing for an efficient parallelisation. If a fair cycle (i.e. counterexample)
is detected, then the algorithm produces a cycle, which is in general shorter than
that produced by depth-first search based algorithms. Experimental results confirm
that our approach outperforms that based on a direct implementation of the best
sequential algorithm.

1 Introduction

The fair cycle detection problem is at the heart of many problems, namely in decid-
ing emptiness of w-automata like generalised Biichi and Streett automata, and in model
checking of specifications written in linear and branching temporal logics like LTL and
fair CTL.

A generalised Biichi automaton is provided together with several sets of accepting
states. A run of such an automaton is accepting if it contains at least one state from every
accepting set infinitely often. Accordingly, the language of the automaton is nonempty
if and only if the graph corresponding to the automaton contains a reachable fair cy-
cle, that is a cycle containing at least one state from every accepting set, or equivalently
a reachable fair strongly connected component, that is a nontrivial strongly connected
component (SCC) that intersects each accepting set. The acceptance condition for Streett
automata is more involved and consists of pairs of state sets. The language of the automa-
ton is nonempty if and only if the automaton graph contains a cycle such that for every
pair of sets whenever the cycle intersects the first set of the pair then it intersects also the
second set. The nonemptiness check for Streett automata can thus be also based on iden-
tification of the fair SCCs of the automaton graph. Other types of automata for which the
nonemptiness check is based on identification of fair cycles are listed in [13].

The LTL model checking problem and the LTL model checking with strong fairness
(compassion) reduce to language emptiness checking of generalised Biichi automata and
Streett automata respectively [33,24]. Fair cycle detection is used to check the CTL
formula EG f under the full (generalised) fairness constraints [13]. Hence, the core pro-
cedure in many model checking algorithms is the fair cycle detection. These algorithms
are in common use in explicit and symbolic LTL model checkers such as SPIN [20]

* Supported by GA CrR grant no. 201/00/1023

and SMV [27] respectively, in fair-CTL model checkers such as SMV, VIS [7], and
COSPAN [17].

Despite the developments in recent years, the main drawbacks of model checking
tools are their high space requirements that still limit their applicability. Distributed
model checking tackles with the space explosion problem by exploiting the amount of
resources provided by parallel environment. Powerful parallel computers can be build of
Networks Of Workstations (NOW). Thanks to various message passing interfaces (e.g.,
PVM, MPI) a NOW appears from the outside as a single parallel computer with a huge
amount of memory.

Reports by several independent groups ([31, 26, 15,4, 3]) have confirmed the useful-
ness of distributed algorithms for the state-space generation and reachability analysis.
Methods for distributing LTL. and CTL model checking have been presented in [1,2, 8]
and [6] respectively. However, until today not much effort has been taken to consider
distributed algorithms for fair cycle detection. In our search for an effective distributed
algorithm let us first discuss diverse sequential algorithms for fair cycle detection.

In explicit algorithms the states of a graph are represented individually. The decom-
position of the graph into SCC can be solved in linear time by the Tarjan algorithm [32].
With the use of this decomposition it is easy to determine fair components and hence
our problem has linear time complexity. Moreover, the nested depth-first search algo-
rithm [21] (NESTEDDFS) optimises the memory requirements and is able to detect
cycles on-the-fly. This makes NESTEDDFS the optimal sequential algorithm.

The explicit representation allows for a direct distribution of the state space. States of
the graph are distributed over particular computers in NOW and are processed in parallel.
When necessary, messages about individual states are passed to the neighbour comput-
ers. However, the depth-first search crucially depends on the order in which vertices are
visited and the problem of depth-first search order is P-complete [29]. Therefore it is
considered to be inherently sequential and we cannot hope for its good parallelisation
(unless NC equals P).

Symbolic algorithms represent sets of states via their characteristic function, typically
with binary decision diagrams (BDDs) [9], and operate on entire sets rather than on indi-
vidual states. This makes the depth-first approach inapplicable and symbolic algorithms
typically rely on the breadth-first search (for surveys see [14,28]). Unfortunately, the
time complexity of symbolic algorithms is not linear; the algorithms contain a doubly-
nested fixpoint operator, hence require time quadratic in the size of the graph in the worst
case. The main advantage of symbolic algorithms over their explicit counterpart is the
fact that BDDs provide a more compact representation of the state space capturing some
of the regularity in the space and allow to verify systems with extremely large number
of states. Nevertheless, there are applications where explicit model checkers outperform
the others, for examples see [31,22,23,12]

Thank to the fact that symbolic algorithms search the graph in a manner where the
order in which vertices are visited is not crucial, these algorithms are directly paralleliz-
able. On the other hand, the distribution of the BDD data structure is rather complicated.
A parallel reachability BDD-based algorithm in [18] partitions the set of states into slices
owned by particular processes. However, the state space has to be dynamically reparti-
tioned to achieve the memory balance and the method requires passing large BDDs be-
tween processes, both for sending non-owned states to their owners and for balancing.
This causes a significant overhead.

Bearing all the reported arguments in mind we have tried to set down a parallel al-
gorithm for fair cycle detection combining advantages of both explicit and symbolic
approach. Our algorithm is in its nature explicit as the states are represented individu-
ally. The state space is well distributable and the parallel computation needs to commu-
nicate only information about individual states. The way how the algorithm computes
resembles that of symbolic algorithms and thus allows for a good parallelisation of the
computation alone.

Since our algorithm is based on symbolic ones, its worst-case complexity is O(n - h)
where h is the height of the SCC quotient graph. Previous experiments ([14]) clearly
show that this height is in practice very small and thus the algorithm is nearly linear.
This observation has been confirmed also by our experiments.

The proposed algorithm is not on-the-fly and the whole state space has to be gener-
ated. For this reason the algorithm is meant not to replace but to complement the depth-
first search based algorithms used in LTL model checking. The depth-first search based
algorithms are of help before spacing out the available memory. On the other hand, our
algorithm performs better in cases when the whole state space has to be searched. This
distinction has been confirmed also by our initial performance evaluation using several
protocols. Our algorithm outperforms that based on a direct implementation of the best
sequential algorithm in a distributed environment especially in cases, when a fair cycle
is not detected.

In model checking applications, the existence of a fair cycle indicates a failure of the
property. In such a case, it is essential that the user is given a fair cycle as a counterex-
ample, typically presented in the form of a finite stem followed by a cycle. The coun-
terexample should be as short as possible, to facilitate debugging. Finding the shortest
counterexample, however, is NP-complete [19]. The great advantage of our approach is
that thanks to the breadth-first search character of the computation the computed fair
cycle (counterexample) is very short in comparison with those computed by a depth-first
search based algorithm.

Last but not least, we would like to emphasis that the algorithm is compatible with
other state-space saving techniques used in LTL model checking. Namely, the algorithm
can be applied together with static partial order reduction [25].

Section 2 reviews basic notions and explains the basics of symbolic fair cycle de-
tection algorithms. In Section 3 a new sequential explicit fair cycle detection algorithm
is presented. The proof of its correctness and analysis of its complexity can be found
in Appendix. The distributed version of the algorithm is described in Section 4. Modi-
fications of the algorithm allowing for a fair cycle detection for generalised Biichi and
Streett automata and a simplification for weak w-automata are presented in Section 5.
Section 6 presents experimental results on real examples and compares the performance
of our algorithm to a distributed implementation of the best sequential algorithm.

2 Fair Cycle Detection Problem

A directed graph is a pair G = (V, E), where V is a finite set of statesand E CV x V
is a set of edges. A path from s; € V to s € V is a sequence (sy,...,5;) € V1 such
that (s;,s;41) € E for1 < i < k. A cycle is a path from a state s to itself. We say that a
state r (a cycle c¢) is reachable from a state s if there exists a path from s to r (to a state
r on the cycle ¢). Moreover, every state is reachable from itself. Given a state set U, the
graph G(U) = (U, EN (U x U)) is the graph induced by U.

A strongly connected component (SCC) of GG is a maximal set of states C' C V such
that for each u, v € C, the state v is reachable from v and vice versa. The quotient graph
of G is a graph (W, H), such that W is the set of the SCCs of G and (Cy,C>) € H if
and only if Cy # C5 and there exist r € C1,s € Cy such that (r,s) € E. The height
of the graph G is the length of the longest path in the quotient graph of GG (note that the
quotient graph is acyclic).

A strongly connected component C is a trivial component if G(C') has no edges and
initial if it is the source of the quotient graph. Let ' C V be a set of fair states. An SCC
C' is a fair component if it is nontrivial and C N F # (. A cycle is fair if it contains
a fair state. The fair cycle detection problem is to decide, for a given graph G with a
distinguished initial state init_state and a set of fair states F', whether G contains a fair
cycle reachable from the initial state. In the positive case a fair cycle should be provided.

Our goal is to bring in an algorithm for the fair cycle detection problem that is not
based on a depth-first search and thus enables effective distribution. Here we take an
inspiration in symbolic algorithms for cycle detection, namely in SCC hull algorithms.
These algorithms compute the set of states that contains all fair components. Algorithms
maintain the approximation of the set and successively remove unfair components until
they reach a fixpoint. Different strategies of removal of unfair components lead to dif-
ferent algorithms. An overview, taxonomy, and comparison of symbolic algorithms can
be found in independent reports [14] and [28]. As the base for our algorithm we have
chosen the One Way Catch Them Young algorithm [14]. The reasons for this choice are
discussed in Section 4.

Symbolic algorithms are conveniently described with the help of u-calculus formu-
lae. Our algorithm makes use of the functions Reachability(S) = puZ.(S U image(Z))
and Elimination(S) = vZ.(S N image(Z)). The set image(Z) contains all succes-
sors of states from Z in a graph G. The function Reachability(S) computes the set of
all states that are reachable from the set S. The function Elimination(S) computes the
set of all states g for which either ¢ lies on a cycle in S or g is reachable from a cycle
in S along a path that lies in S. The computation of Elimination(S) is performed by
successive removal of states that do not have predecessors in S. With the help of these
functions the algorithm One Way Catch Them Young can be formulated as follows:

proc OWCTY(G, F, init_state)
:= Reachability(init_state);

old :=
while (S # old) do
old .= S;

S := Reachability(S N F);
S := Elimination(S);
od
return (S # 0);
end

The assignment S := Reachability (S N F) removes from the set S all initial com-
ponents of G(.S), which do not contain any fair state (in fact only SCCs reachable from
a fair component are left in S). The assignment S := Elimination(S) removes from
the set S all initial trivial components (besides others). Thus each iteration of the while
cycle (so called external iteration) removes initial unfair components of G(.S) until the
fixpoint is reached.

The worst-case complexity of the algorithm OWCTY is O(n?) steps' or more pre-
cisely O(h - n)) where n is the number of states of the graph and b is the height of G.
Howeyver, numerous experiments show that the number of external iterations tends to be
very low and hence the number of steps is practically linear [14].

3 Sequential algorithm

In this section we present a new sequential algorithm for fair cycle detection problem,
prove it correctness, and analyse its complexity. The distributed version of the algorithm
is discussed in the next section.

3.1 Detection of a Fair Cycle

The explicit algorithm DETECT-CYCLE emulates the behaviour of the OWCTY algo-
rithm. The set S is represented explicitly. For each state g the information whether g is
in the set S is stored in the boolean array inS. The emulation of the intersection oper-
ation and the Reachability(S) function is straightforward (see the procedures RESET
and REACHABILITY respectively). The emulation of Elimination(S) is more involved:
concurrently with the emulation of Reachability(S) we count for each state ¢ the num-
ber of its predecessors belonging to the set S (array p). On top of that we keep the list
L of vertices, which have no predecessors in .9, that is, those for which p[g] = 0. These
vertices are eliminated from S in the procedure ELIMINATION. Data structures used by
the algorithm and their initial settings are:

— inS is a boolean array and is set to false for each state.

— pis an integer array and is set to O for each state.

— Lis alist of states, initially empty. L is implemented as doubly linked list, hence all
necessary operations (insertion, deletion, and removal of a state) can be performed
in constant time.

— Ssize and oldSsize are number variables initially set to 1 and O respectively.

— queue is an initially empty queue.

1 proc DETECT-CYCLE(G, F, init_state)
put init_state into queue;
nS[init_state] := true;
REACHABILITY;
while (Ssize # oldSsize A Ssize > 0) do
RESET;
REACHABILITY;
ELIMINATION;
od
10 return(Ssize > 0);
11 end

o NN W

! The complexity of symbolic algorithms is usually measured in number of steps (image compu-
tations), since the real complexity depends on the conciseness of the BDD representation.

1 proc RESET

2 oldSsize := Ssize;

3 Ssize := 0;

4 foreach q € V do

5 inS[q] := inS[g] Nq € F;

6 plg =0

7 if in.S[q] then Ssize := Ssize + 1;
8 put g in queue;

9 putgin L; fi

10 od

11 end

1 proc REACHABILITY

2 while queue # 0 do

3 remove g from queue;

4 foreach (¢,7) € E do

5 if (—inS[r]) then inS[q] := true;
6 Ssize 1= Ssize + 1;
7 put 7 in queue; fi

8 if p[r] = 0 then remove r from L; fi
9

p[r] :=p[r] +1;

10 0
11 od
12 end

1 proc ELIMINATION

2 while L # 0 do

3 remove g from L;

4 inS|q] := false;

5 Ssize := Ssize — 1;

6 foreach (¢,7) € E do
7 plr] :==plr] - 1;

8 if p[r] = 0 then putr to L fi
9 od
10 od
11 end

Theorem 1 (Correctness). DETECT-CYCLE ferminates and returns true if and only if
G contains a fair cycle reachable from the init_state.

Theorem 2 (Complexity). The worst-case complexity of the algorithm DETECT-CYCLE
is O(h - (n + m)), where n is the number of states in G, m is the number of edges in G,
and h is the height of G.

Proofs of both theorems are in Appendix.

3.2 Extraction of a Fair Cycle

In this section we present an algorithm, which complements DETECT-CYCLE and for
graphs with fair cycles returns a particular fair cycle. The algorithm for the extraction
makes use of values stored in the boolean array n.S computed by DETECT-CYCLE. The
set S (represented via inS) initially contains all fair cycles.

The procedure EXTRACT-CYCLE searches the graph G from the initial state for a
fair state s from the set S. A nested search is initialised from s and an existence of a
cycle from s to s is checked. In the nested search only the graph G(.S) induced by S is
searched. Moreover, every state, which has been completely searched by a nested search
without discovering a cycle, can be safely removed from S. This ensures that each state
is visited in nested searches only once and the algorithm has linear complexity.

In both searches the graph is traversed in a breadth-first manner. Nevertheless, the or-
der in which states are visited is not important and this allows for an effective distribution
of the computation. The discovered cycle is output with the help of parent values.

The great advantage of our approach is that due to the fact that the graph is searched
in a breadth-first fashion the revealed fair cycles (i.e. counterexamples) tend to be much
shorter than those generated by depth-first based algorithms (see Section 6).

proc EXTRACT-CYCLE(G, F) init_state,inS)
put init_state into queue;
while cycle not found do
remove s from queue;
if inS[s] A s € F then NESTEDBFS(s); fi
foreach (s,r) € E do
if parent[r] = nil then parent[r] := s;
put 7 in queue; fi
od
od
while s # init_state do output s; s := parent[s]; od
end

proc NESTEDBFS(s)
put s into queueZ;
while cycle not found and queue2 not empty do
remove q from queueZ;
foreach (¢,7) € E do
if inS[r] A parent2|[r] = nil then parent2[r] = q;
put r in queue2 fi
if » = s then cycle found;
r := parent2|r];
while r # s do output r; r := parent2[r]; od

fi
od
mnS[q] := false;
od
end

Theorem 3 (Correctness). The EXTRACT-CYCLE procedure finds a fair cycle. The se-
quence of states output by EXTRACT-CYCLE forms (in the reverse order) a cycle con-
taining a fair state followed by a path from the fair state to the initial state.

Theorem 4 (Complexity). The complexity of EXTRACT-CYCLE is O(n + m).

4 Distributed Algorithm

Similar to other works devoted to the distributed model checking [6, 3, 8,31, 4] we as-
sume the MIMD architecture of a network of workstations, which communicate via mes-

sage passing (no global information is directly accessible). All workstations execute the
same program. One workstation is distinguished as a Manager and is responsible for the
initialisation of the computation, detection of the termination, and output of results.

The set of states of the graph to be searched for fair cycles is partitioned into disjoint
subsets. The partition is determined by the function Owner, which assigns every state ¢
to a workstation 4. Each workstation is responsible for the graph induced by the owned
subset of states. The way how states are partitioned among workstations is very important
as it has a direct impact on the communication complexity and thus on the runtime of the
algorithm. We do not discuss it here because it is itself quite a difficult problem, which
moreover depends on a particular application.

The procedures RESET, REACHABILITY, and ELIMINATION can be easily trans-
formed into distributed ones. Each workstation performs the computation on its part of
the graph. Whenever a state s belonging to a different workstation is reached, the work-
station sends an appropriate message to the Owner(s). All workstations periodically read
incoming messages and perform required commands.

Computations on particular workstations can be performed in parallel. However,
some synchronisation is unavoidable. All workstations perform the same procedure (RE-
SET, REACHABILITY, or ELIMINATION). As soon as a workstation completes the pro-
cedure it sends a message to the Manager and becomes idle. When all workstations are
idle and there are no pending messages the Manager synchronises all workstations and
the computation continues.

The need of synchronisation after each procedure is the reason why we have cho-
sen the One Way Catch Them Young algorithm as a base for our explicit algorithm. The
analysis and experiments by Fisler at al. [14] indicates that this algorithm performs less
external iterations then for example the well-known Emerson-Lei algorithm?. The num-
ber of external iteration determines the number of necessary synchronisations.

Due to space limitations we do not display the pseudo-code of the distributed DETECT-
CYCLE algorithm. It can be found in the full version of the paper [10].

The distributed counterpart of the procedure EXTRACT-CYCLE comes by in a similar
way as for DETECT-CYCLE. The important point is that only one NESTEDBFS can be
performed at a time. The basic traversal is executed in parallel. Whenever a workstation
finds a suitable candidate s for the nested traversal (that is, s € S N F) it sends it to
the Manager. The Manager puts the incoming candidates into a queue and successively
starts NESTEDBFS from them.

5 Modifications

In LTL model checking one often encounters not only Biichi automata for which the
non-emptiness problem directly corresponds to a detection of fair cycles, but also their
variants called weak and generalised Biichi automata and Streett automata. For these
automata the non-emptiness problem corresponds to a slightly different version of the
fair cycle detection problem. The advantage of the DETECT-CYCLE algorithm is that it
can be easily modified in order to solve these problems.

2 We note that some other algorithms studied by [14] perform even less external iterations. These
algorithms make use of the preimage computation (i.e. computation of predecessors), which is
usually not available in the explicit model checking

In this section we provide pseudocodes of set based algorithms for the modified prob-
lems. The necessary modifications in both sequential and distributed explicit algorithms
straightforwardly reflect changes of the set based algorithm and we do not state them.

Weak Graphs

We say that a graph G with a set F’ of fair states is weak if and only if each component
C' in SCC decomposition of G is either fully contained in F' (C' C F') or is disjoint with
F(CNF=0.

Our study of hierarchy of temporal properties [11] suggests that in many cases the
resulting graph is weak. Thus it is useful to develop specialised algorithms for these
graphs. Actually, Bloem, Ravi, and Somenzi [5] have already performed experiments
with specialised symbolic algorithms and state-of-the-art algorithms for generation of
automaton for an LTL formula [30] include heuristics generating automaton as “weak”
as possible.

From the definition of weak graphs it follows that the set F' is a union of some SCCs.
Thus a fair component exists if and only if some nontrivial component is contained in
F'. These observations lead to the following algorithm:

proc WEAK-DETECT-CYCLE(G, F, init_state)
S := Reachability(init_state);
S := Elimination(S N F);
return (S # 0);

end

The algorithm WEAK-DETECT-CYCLE has several advantages. At first, its complexity
is O(n+m). This is asymptotically better than the complexity of DETECT-CYCLE and is
the same as the complexity of the NESTEDDFS algorithm. At second, in the distributed
environment, the specialised algorithm needs to synchronise only two times.

Thus one can use the specialised algorithm profitably whenever it is possible. The
natural question is how expensive is to find out whether a graph is weak. In model
checking applications the graph to be searched for fair cycles is a product of a sys-
tem description (that is a graph without fair states) and a rather small graph expressing a
desired property of the system. The weakness of the graph is determined by the property
graph and hence it suffices to put the small graph to the weakness test.

Generalised Fair Condition

Generalised fair condition F is a set {F;} of fair sets. A cycle is fair in respect to a
generalised fair condition { F;} if and only if for each fair set F; there exists a state g on
the cycle such that g € F;.

In model checking applications, algorithms translating an LTL formula into an au-
tomaton usually end up with generalised fair conditions [16]. One can transform (and
model checker tools usually do so) the generalised condition into the ordinary one through
a “counter construction”. But the transformation increases the number of states, which
is highly undesirable. Therefore it is more favourable to test directly the generalised
condition.

The modification of the DETECT-CYCLE algorithm for the generalised condition is
rather simple. It suffices to guarantee that states in .S are reachable from all fair sets.

proc GENERALIZED-DETECT-CYCLE(G, F, init_state)
S := Reachability(init_state);

old := 0
while (S # old) do
old := S;

foreach F; € F do
S := Reachability(S N F;); od
S := Elimination(S); od
return (S # 0);
end

Streett Fair Condition

Streett fair condition F is a set of tuples {(P;, Q;)}. A cycle C is fair in respect to
a Streett fair condition if and only if for each tuple (P;, Q;) it holds C N P; # 0 =
cnQ; #0.

Streett fair condition is used to express strong fairness (compassion), that is, intu-
itively “if there is an infinite number of requests then there is an infinite number of
responses”. Strong fairness can be expressed in LTL and thus it is possible to use the
algorithm for (generalised) Biichi fair condition in order to check properties of system
with strong fairness requirements. However, this approach leads to the blowup of the size
of formula automaton and thus it is more efficient to check the strong fairness directly
(see [24]).

The set based algorithm for the Street fair condition can be formulated as follows:
proc STREETT-DETECT-CYCLE(G, F, init_state)

S := Reachability (init_state);

old := 0;
while (S # old) do
old .= S;

foreach (P;,Q;) € F do
S := (S — P;) U Reachability(S N Q;); od
S := Elimination(S); od
return (S # 0);
end

For the proof of correctness see [24]. Corresponding modification of the explicit
algorithm is more technically involved though rather straightforward.

The important fact is that other algorithms like NESTEDDEFS or algorithm presented
in [8] cannot cope with generalised and Streett condition in such a simple way (in fact
the distributed algorithm from [8] cannot be directly modified to cope with generalised
and Streett fair cycles).

6 Experiments

We performed series of experiments in order to test the practical usefulness of the pro-
posed algorithms. In this section we mention representative results and discuss conclu-
sions we have drawn from the experiments.

The implementation has been done in C++ and the experiments have been performed
on a cluster of twelve 700 MHz Pentium PC Linux workstations with 384 Mbytes of

10

RAM each interconnected with a fast 100Mbps Ethernet and using Message Passing
Interface (MPI) library. Reported runtimes are averaged over several executions.

Graphs for experiments were generated from a protocol and an LTL formula in ad-
vance and programs have been provided with an explicit representation of a graph. This
approach simplifies the implementation. However, as discussed later it has an unpleasant
impact on the scalability of the distributed algorithm.

For graphs generation a simple model-checking tool has been used allowing us to
generate graphs with approximately one million states. The algorithm was tested on
several classical model checking examples:

— Absence of a starvation for a simple mutual exclusion protocol and for the Peterson
protocol (Mutex, Peterson).

— Safety property for the alternation bit protocol (ABP).

— Reply properties (with fairness) for a model of an elevator (Elevatorl, Ele-
vator2).

— Safety and liveness properties for a token ring (Ringl,Ring2,Ring3, Ring4).

— Liveness property for the dining philosophers problem (Philosophers).

General Observations

At first, we have compared the sequential version of our algorithm with the sequentially
optimal NESTEDDFS algorithm. We remind that from the theoretical point of view our
algorithm is asymptotically worse. Table 1 summarises experiments with graphs without
fair cycles and Table 2 covers experiments with graphs having fair cycles. The following
conclusions can be drawn from the experiments:

— The number of external iterations of DETECT-CYCLE is very small (less than 40)
even for large graphs. This observation is supported by experiments in [14] with the
symbolic implementation of the set-based algorithm. They obtained similar results
for hardware circuits problems.

— The complexity of DETECT-CYCLE is in practice nearly linear.

— The runtime of our algorithm is comparable to NESTEDDFS for correct specifica-
tions (graphs without fair cycles).

— In the case of an erroneous specification (graphs with fair cycles) NESTEDDES is
significantly faster because it is able to detect cycles “on-the-fly” without traversing
the whole graph.

— On the other hand, the counterexamples generated by DETECT-CYCLE are signifi-
cantly shorter because of the breadth-first nature of the algorithm. This is practically
very important feature as counterexamples consisting of several thousands of states
(as those generated by NESTEDDEFES) are quite useless.

— The last observation compares the runtime of the first phase (cycle detection) to
the second phase (cycle extraction) of our algorithm. Evidently the time needed for
the second phase is significantly shorter than that for the first phase. Thus potential
optimisations, heuristics, etc. of the algorithms should be directed at the first phase.

Distributed Tests

We note that experiments concerning the distributed version are only preliminary since
the current implementation is straightforward and is far from being optimal. For example,
it suffers from problems with load-balancing. The only optimisation that we have used
is the reduction of communication by packing several messages into one.

11

System Algorithm Time (s) External

Size Iterations

Peterson NESTEDDFS 0.02

376 DETECT-CYCLE 0.06 18

ABP NESTEDDFS 0.22

7286 DETECT-CYCLE 0.41 1

Ringl NESTEDDFS 17.13

172 032 DETECT-CYCLE 7.61 1

Elevator?2 NESTEDDFS 35.10

368 925 DETECT-CYCLE 55.76 30

Philosophers NESTEDDFS 72.68

608 185 DETECT-CYCLE 52.04 1

Table 1. Sequential experiments for graphs without fair cycles.

System Algorithm Time (s) Extract External Fair cycle
Size time (s) Iterations Prefix Loop
Mutex NESTEDDFS 0.01 76 3
232 DETECT-CYCLE 0.02 0.01 2 2 2
Ring3 NESTEDDFS 2.70 14420 3
389 542 DETECT-CYCLE 29.07 1.17 2 28 23
Elevatorl NESTEDDFS 7.28 304 76
683 548 DETECT-CYCLE 99.43 1.80 8 20 22
Ring2 NESTEDDFS 12.82 2754 363
1027 394 DETECT-CYCLE 305.51 11.31 40 52 14

Table 2. Sequential experiments for graphs with a fair cycle. The column Time gives the overall
time, Extract time is the time needed for the extraction of the cycle.

Phi | osophers (608 185 states)

¥

“l *7N\\\\“\‘4“‘\‘*““‘+44———*<—~4~+»~4»~+/4/4»F»;»4—F<44~ﬁ44444:
%
2 10

T
Detect Cycle —+— -
sted -

Ti me(s)

2000

1500

1000

500

Ring4 (1 250 075 states)

F

2 10

T
Detect cycle —+—
Nested DFS --x-—-

4 6 8
Nunmber of workstations

12

4 6 8
Nurmber of workstations

12

Fig. 1. Comparison of distributed NESTEDDFS and DETECT-CYCLE.

12

We have compared our algorithm to the distributed version of NESTEDDFS where
only one processor, namely the one owning the actual state in the depth-first search, is ex-
ecuting the search at a time. The network is in fact running the sequential algorithm with
extended memory. The runtime of NESTEDDFS increases with the number of worksta-
tions thanks to the additional communication. On the other hand, our algorithm can take
advantage of more workstations since it exploits parallelism. Hence in the distributed
environment our algorithm convincingly outperforms NESTEDDFS .

The current implementation of DETECT-CYCLE algorithm is not optimised and does
not scale ideally. We identify two main reasons. The first one is the straightforwardness
of our implementation. The second, more involved reason, is based on fact that in our
experiments we use pre-generated graphs, which however are not too large in compari-
son to the memory capacity of the NOW. Consequently the local computations are very
fast and the slow communication has high impact on the overall runtime. We infer, in a
similar way as [6], that if the algorithm computed the graph on-the-fly from the specifi-
cation language then the communication and synchronisation would have smaller impact
on the runtime and the algorithm would achieve better speedup. To support this explana-
tion we have measured besides the real time taken by the computation also the CPU time
consumed by particular workstations. Fig. 2 resumes the results. The numbers indicate
that the time taken by a local computation (CPU time) really scales well.

Scal ability
8
Elevator2 Real 8-
Elevator2 CPU &
Philosophers Real ---x---
7r Philosophers CPU - q
Ring3 Real ---o--- =
Ring3 CPU o
6 =l ~ 4
R
&

5L a]
Q Q
=] 2 9
e} *
2 _— ‘
&

3 -

X
2k B o~ 4
o o
1k 4
0 I I I I I

4 6 8 10 12
Nunmber of workstations

Fig. 2. Dependency of the runtime on the number of workstations. Figure shows the difference
between real time taken by the program and the average CPU time used by a workstation.

We have also implemented the distributed WEAK-DETECT-CYCLE algorithm and
performed a comparison of the general and the specialised algorithm on weak graphs.
Experiments indicate that the specialised algorithm can yield a considerable improve-
ment (see the full version [10]).

13

7 Conclusions & Future Work

In this paper, we present a new distributed algorithm for fair cycle detection problem.
The demand for such an algorithm becomes visible especially referring to automata-
based LTL model checking. This verification method suffers from the state explosion.
Distributed model checking allows to cope with the state explosion by reason of alloca-
tion of the state space to several workstations in a network.

Our distributed algorithm comes out from a set-based algorithm, which searches the
state space in a breadth-first search manner, which makes a distribution possible. On the
other hand, the state space is represented explicitly and thus can be partitioned very nat-
urally. The algorithm is compatible with other state space saving methods, namely with
static partial order reduction. It aims not to replace but to complement the classical nested
depth-first search algorithm used in explicit LTL model checkers as it demonstrates its
efficiency especially in cases when the searched space does not contain any fair cycle.

We have implemented our approach within an experimental platform. We found out
that the complexity of our algorithm is nearly linear. The runtime of the sequential
DETECT-CYCLE algorithm is comparable to that of NESTEDDFS on correct specifi-
cations. For an erroneous specifications counterexamples generated by our algorithm
tend to be significantly shorter. The distributed DETECT-CYCLE algorithm is notewor-
thy faster than the distributed implementation of NESTEDDES for all types of graphs.
In the future we plan to implement our approach to an existing tool and to compare its
efficiency with other distributed LTL model checking algorithms ([1, 8]).

There are several alternatives to One Way Catch Them Young in the literature, for
excellent reviews see [28, 14]. The natural question thus is whether similar distributed
algorithms for fair cycle detection as the one we have proposed can be build upon other
symbolic algorithms for cycle detection.

References

1. J. Barnat, L. Brim, and J. Stifbrn4. Distributed LTL Model-Checking in SPIN. In Proc. SPIN
Workshop, volume 2057 of LNCS, pages 200 — 216. Springer, 2001.

2. J. Bamat, L. Brim, and I. Cernd. Property driven distribution of Nested DFS. In Proc. Work-
shop on Verification and Computational Logic, number DSSE-TR-2002-5 in DSSE Technical
Report, pages 1 — 10. Dept. of Electronics and Computer Science, University of Southampton,
UK, 2002.

3. G. Behrmann. A performance study of distributed timed automata reachability analysis. In
Proc. Workshop on Parallel and Distributed Model Checking, volume 68 of ENTCS. Elsevier,
2002.

4. S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable distributed on-the-fly
symbolic model checking. In Proc. FMCAD, volume 1954 of LNCS, pages 390-404, 2000.

5. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking of
linear time logic properties. In Proc. CAV, volume 1633 of LNCS, pages 222-235. Springer,
1999.

6. B. Bollig, M. Leucker, and M. Weber. Parallel model checking for the alternation free p-
calculus. In Proc. TACAS, volume 2031 of LNCS, pages 543-558. Springer, 2001.

7. R. K. Brayton et al. VIS: a system for verification and synthesis. In Proc. FMCAD, volume
1166 of LNCS, pages 248 — 256. Springer, 1996.

8. L.Brim, I. Cern4, P. Kr&4l, and R. Peldnek. Distributed LTL model checking based on negative
cycle detection. In Proc. FST TCS, volume 2245 of LNCS, pages 96—107. Springer, 2001.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

R.E. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE Transac-
tions on Computers, volume C-35(8), pages 677 — 691, 1986.

I. Cerndi and R. Peldnek. Distributed explicit fair cycle detection. Tech-
nical Report FIMU-RS-2002-09, Faculty of Informatics, Masaryk University, 2002.
www.fi.muni.cz/informatics/reports/.

L. Cerné and R. Peldnek. Relating the hierarchy of temporal properties to model checking.
Submitted, 2002.

C. Eisner and D. Peled. Comparing symbolic and explicit model checking of a software
system. In Proc. SPIN Workshop, volume 2318 of LNCS, page 230 239. Springer, 2002.

E. A. Emerson and C.-L. Lei. Modalities for model checking: branching time logic strikes
back. Science of Computer Programming, 8:275 — 306, 1987.

K. Fisler, R. Fraer, G. Kamhi Y. Vardi, and Z. Yang. Is there a best symbolic cycle-detection
algorithm? In Proc. TACAS, volume 2031 of LNCS, pages 420—434. Springer, 2001.

H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construction for model-
checking. In Proc. SPIN Workshop, volume 2057 of LNCS, pages 215+. Springer, 2001.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In Proc. Protocol Specification Testing and Verification, pages 3—18.
Chapman & Hall, 1995.

R. H. Hardin, A. Harel, and R. P. Kurshan. COSPAN. In Proc. CAV, volume 1102 of LNCS,
pages 423 — 427. Springer, 1996.

T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in parallel reach-
ability analysis of very large circuits. In Proc. CAV, volume 1855 of LNCS, pages 20-35.
Springer, 2000.

R. Hojati, R. K. Brayton, and R. P. Kurshan. BDD-based debugging using language contain-
ment and fair CTL. In Proc. CAV, volume 697 of LNCS, pages 41 — 58. Springer, 1993.

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279-295, 1997.

G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Proc. SPIN
Workshop, pages 23-32. American Mathematical Society, 1996.

A. J. Hu. Techniques for efficient formal verification using binary decision diagrams. PhD
thesis, Stanford University, 1995.

A. J. Hu, G. York, and D. L. Dill. New techniques for efficient verification with implicitly
conjoined BDDs. In Proc. Design automation Conference, pages 276 — 282, 1994,

Y. Kesten, A Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifi-
cations. In Proc. ICALP, volume 1443 of LNCS, pages 1-16. Springer, 1998.

R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenign1. Static partial order reduction. In
Proc. TACAS, volume 1384 of LNCS, pages 345 — 357. Springer, 1998.

F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. SPIN Work-
shop, volume 1680 of LNCS, Berlin, Germany, 1999. Springer.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, Boston, MA, 1994.
K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms for the com-
putation of fair cycles. In Proc. FMCAD, volume 1954 of LNCS, pages 143-160. Springer,
2000.

JH. Reif. Depth-first search is inherrently sequential. Information Processing Letters,
20(5):229-234, 1985.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In Proc. CAV,
volume 1855 of LNCS, pages 248-263. Springer, 2000.

U. Stern and D.L. Dill. Parallelizing the Murp verifier. In Proc. CAV, volume 1254 of LNCS,
pages 256-267. Springer, 1997.

R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on computing, pages
146-160, 1972.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concur-
rency: Structure versus Automata, volume 1043 of LNCS, pages 238 — 266. Springer, 1996.

15

Appendix

Correctness and Complexity of DETECT-CYCLE

In what follows we denote S the set of states ¢ such that inS[q] = true and particularly
S} the set of states g such that inS[g] = true just before the i-th execution of the line [
in DETECT-CYCLE ([= 6,7, 8). Arguments are presented in the manner, which allows
their transfer to the distributed algorithm.

Lemma 1. At the end of REACHABILITY the set S is the set of states that are reachable
from states which were in the queue at the beginning of the procedure.

Proof: Whenever the procedure REACHABILITY is called, the queue contains exactly all
the states for which inS|[q] = true. REACHABILITY performs the standard breadth-first
search and empties the queue.

Lemma 2. The invariant ¢ € L = (¢ € S A plg] = 0) holds true during the whole
computation of DETECT-CYCLE.

Proof: Only states 7 with p[r] = 0 are put in L in ELIMINATION and RESET. To show
L C S we notice that queue = S = L at the end of RESET and S is the set of states
reachable from L at the end of REACHABILITY (Lemma 1). Only states reachable from
L are put to L in ELIMINATION but those states are already in S.

Lemma 3. Immediately after executing RESET, REACHABILITY and ELIMINATION re-
spectively, the value of Ssize is the size of the set S.

Proof: Whenever a new state ¢ is added to S in REACHABILITY the variable Ssize
is changed accordingly. In RESET only those states which are kept in S are counted.
Correctness for ELIMINATION follows from the inclusion L C S (LLemma 2).

Lemma 4. Immediately after executing REACHABILITY and ELIMINATION respectively,
the value of p|q] is the number of those direct predecessors of the state q, which belong

to S.

Proof: Whenever a state r is attained in REACHABILITY the value p[r] is updated. When-
ever a state is deleted from S in ELIMINATION all its direct successors are visited and
their respective values are updated.

On the other side, the value of p[r] is changed only when some of its direct prede-
cessors is added to/removed from queue (Lemma 2).

Lemma 5. During one execution of the procedure REACHABILITY each state is inserted
to and deleted from the queue at most once. During one execution of the procedure
ELIMINATION each state is removed from L at most once.

Proof: No state is removed from S in REACHABILITY. Moreover, ¢ € queue = q € S
and the state ¢ is added to queue onlyif ¢ € S.

The assertion for ELIMINATION follows from Lemma 2 and the fact that states are
removed simultaneously both from L and S.

Lemma 6.

-Si=8iNF.

- Sg is the set of states reachable from the set S&.

- Sé'H is the set of all states q for which either q lies on a cycle in G(S}) or q is reachable
in G(SE) from a cycle in G(S§).

16

Proof: The first equality follows directly from the code of the procedure RESET.

The second fact is a direct consequence of Lemma 1, because the content of queue
at the beginning of REACHABILITY is S3.

By Lemma 4, value p[g] is the number of direct predecessors of ¢ in G(Sg) and
only states with none predecessors are removed from S in ELIMINATION. Therefore all
states with the required property are in Sé“. On the other hand, all predecessors of the
state ¢ not satisfying the condition will eventually be removed (this can be formalised
by induction on the length of the longest chain of predecessor of a given state), hence
eventually p[q] is set to O, the state ¢ is put in L and removed from the set S afterwards.

Lemma7. Sit* C S}
Proof: The assertion can be proved by induction on ¢. For the base case ¢ = 1 we argue
that S} is the set of all states reachable from init_state and all the states put in S in
REACHABILITY (line 7) are reachable from init_state and thus SZ C S§.

For the general case we suppose Sé"'l C S§. Then we can reason with the use of
Lemma 6 as follows: (SiT' C S) = (Set' N F C SN F) = (Sit! C Si) = each
state reachable from Sit! is reachable from Si as well = (Si™' C Si) = each state

that lies on (or is reachable from) a cycle in Sg"'l lies on (or is reachable from) a cycle

in S} as well = (Sit? C S&t).

Theorem 5 (Termination). 7he DETECT-CYCLE algorithm terminates.
Proof: The termination of REACHABILITY and ELIMINATION follows from Lemma 5.
The termination of RESET is straightforward.

By Lemma 7, Sg“ C 8§ which together with Lemma 3 ensures that the condition
on line 5 eventually becomes false and DETECT-CYCLE terminates as well.

Theorem 6 (Completeness). If G contains a fair cycle reachable from the init_state
then DETECT-CYCLE returns true.

Proof: Let C be a fair cycle in G and g a fair state that lies on the cycle C. We prove by
induction on i that ¢ € S§. For the base case i = 1 we argue that S} is the set of states
reachable from init_state and thus g € S}.

Now let ¢ € S¢. By Lemma 6, ¢ € St. The state q as well as all the states reachable
from ¢ belong to S§. Namely, the whole cycle C' belongs to Si and by Lemma 6 cycle
C belongs also to the set Sit.

Hence after executing the while loop the state g belongs to S, therefore Ssize > 0
(Lemma 3) and DETECT-CYCLE returns true.

Theorem 7 (Soundness). If DETECT-CYCLE returns true, then G contains a fair cycle
reachable from the init_state.

Proof: Let us suppose that DETECT-CYCLE terminates after k iterations of the while
cycle. Since the algorithm returns true, Ssize > 0, S¥ = Sg_l and S¥ is nonempty
(Lemma 3 and 7).

Let us consider the decomposition of S¥ into SCCs. Let C be the initial component.
We demonstrate that C' is fair (that is, C' contains a fair state and is nontrivial). This
implies the assertion of the theorem.

Let us suppose that C N F = (. The set Sg’l contains only states reachable from
S{; ~'NF = S¥ N F and because C is initial no state from C is in ng ~1. Consequently
C' is not contained in Sé“ (Lemma 6), a contradiction.

If the component C' were trivial, it would be removed from the set S¥ = S(’f ~1 by
the procedure ELIMINATION due to Lemma 6.

17

Theorem 8 (Complexity). The worst-case complexity of the algorithm DETECT-CYCLE
is O(h - (n + m)), where n is the number of states in G, m is the number of edges in G,
and h is the height of G.

Proof: The complexity of the procedure RESET is O(n). REACHABILITY and ELIMINATION
procedures have complexity O(m) (Lemma 5). Thus it remains to show that the while
loop in DETECT-CYCLE can iterate at most h times.

For a graph H, let us denote by h,, the length of the longest path in the quotient graph
of H starting in an initial unfair component (the unfair height of H). By induction on
i we prove that the unfair height of G(S¥) is at most h — 4 + 1. The assertion clearly
holds for ¢ = 1 as h,, < h. For the induction step we note that by Lemma 6 in the i-th
iteration of the while cycle all initial unfair components of SP are removed from S¢.
This claim together with the observations that all SCCs of S¢, ; are also SCCs in S¢ and
the quotient graph of S? ', 1 is a subgraph of the quotient graph of S$ guarantee that the
while loop in DETECT-CYCLE iterates at most h times.

Correctness and Complexity of EXTRACT-CYCLE

Theorem 9 (Soundness). The sequence of states output by EXTRACT-CYCLE forms (in
the reverse order) a cycle containing a fair state followed by a path from the fair state to
the initial state.

Proof: Each state s visited in the while cycle of EXTRACT-CYCLE is reachable from the
init_state and similarly each state r visited in NESTEDBFS(s) is reachable from s. Since
NESTEDBFES is initialised only from fair states, the lemma follows.

Theorem 10 (Completeness). The EXTRACT-CYCLE procedure finds a fair cycle.

Proof: Let C be an initial component of the quotient graph of G(S), where S is the
set computed by DETECT-CYCLE(G, F, init_state). In NESTEDBFS only the induced
graph G(S) is searched and thus no state from C can be reached (and removed from
S) by NESTEDBFS initialised in a state outside C'. By the proof of Theorem 7, the
component C' is also fair. For that reason it must be the case that either a fair cycle
is found somewhere outside C' or EXTRACT-CYCLE reaches a fair state s in C' and
consequently NESTEDBFS(s) discovers a cycle from s to s.

Theorem 11 (Complexity). The complexity of EXTRACT-CYCLE is O(n + m).

Proof: The EXTRACT-CYCLE procedure visits each state only once. NESTEDBFS visits
only states in S and once a state is completely searched by NESTEDBFES it is removed
from S. Hence, NESTEDBES visits each state at most once too.

18

