Using SPIN for Feature Interaction Analysis — a
Case Study

M. Calder and A. Miller

Department of Computing Science
University of Glasgow
Glasgow, Scotland.

Abstract. We show how SPIN is applied to analyse the behaviour of
a real software artifact — feature interaction in telecommunications ser-
vices. We demonstrate how minimal abstraction and optimisation tech-
niques can greatly reduce the cost of model-checking, and how analysis
can be performed automatically using scripts.

Keywords

telecommunications services; Promela/SPIN; communicating processes; distributed
systems; formal modelling; analysis and reasoning techniques; feature interaction

1 Introduction

In software development a feature is a component of additional functionality —
additional to the main body of code. Typically, features are added incrementally,
often by different developers. A consequence of adding features in this way is
feature interaction, when one feature affects, or modifies, the behaviour of an-
other feature. Although in many cases feature interaction is quite acceptable,
even desirable, in other cases interactions lead to unpredictable and undesirable
results. The problem is well known within the telecommunications (telecomms)
services domain (for example, see [2]), though it exhibits in many other domains
such as email and electronic point of sales.

Techniques to deal with feature interactions can be characterised as design
time or run time, interaction detection and/or resolution. Here, we concentrate
on detection at design time, resolution will be achieved through re-design.

When there is a proliferation of features, as in telecomms services, then au-
tomated detection techniques are essential. In this paper, we investigate the
feasibility of using Promela and SPIN [14].

Our approach involves considering a given service (and features) at four dif-
ferent levels of abstraction: communicating finite state automata, temporal logic
formulae, Promela specifications and labelled transition systems and Biichi au-
tomata. We make contributions at several levels, including

— a low level call service model in Promela that permits truly independent call
control processes with asynchronous communication, asymmetric call control
and a facility for adding features in a structured way,

— optimisation techniques for Promela which result in tractable state-spaces,
thus overcoming classic state-explosion problems,

— interaction analysis of a basic call service with six features, involving four
users with full functionality. There are two types of analysis, static and
dynamic, the latter is completely automated, making extensive use of Perl
scripts to generate the model-checking runs.

Related work is discussed below. The overall approach to interaction detec-
tion, and the role of SPIN, is given in section 2; section 3 contains an introduction
to feature interaction analysis. Sections 4, 5 and 6 give an overview of the fi-
nite state automata, temporal properties, the Promela implementation of the
basic call service, and optimisations. Sections 7 and 8 contain an overview of
the features and their implementations. The interaction analysis is described in
sections 10 and 11 and in section 12 we discuss how the Promela models and
SPIN model-checking runs required for the analysis are automated. We conclude
in section 13.

1.1 Related Work

Model-checking for feature interaction analysis has been investigated using SMV
[20], Caesar [21], COSPAN [10] and SPIN [16]. In the last, the Promela model
is extracted mechanically from call processing software code; no details of the
model are given and so it is difficult to compare results. In [20], the authors are
restricted to two subscribers of the service with full functionality (plus two users
with half functionality), due to state-explosion problems. For similar reasons, call
control is not independent. Nevertheless, we regard this as a benchmark paper
and aim at least to demonstrate a similar set of properties within our context.
In [10] features and the basic service are described only at an abstract level by
temporal descriptions. State-explosion is avoided, but interactions arising from
implementation detail, such as race conditions, cannot be detected. Our layered
approach permits this, building on earlier work by the first author in [21], using
process algebra. This too suffered from limitations of state-explosion and the
lack of (explicit) asynchronous communication; these limitations motivated the
current investigation using Promela and SPIN. Initial attempts to model the
basic call service using Promela and SPIN are described in [4].

2 Approach

Our approach has two phases; in the first phase we consider only the basic call
service, as depicted in figure 1(a). The aim of the first phase is to develop the
right level of abstraction of the basic service and to ensure that we have effective
reasoning techniques, before proceeding to add features.

Our starting point is the top and left hand side of figure 1(a): the automata
and properties. Neither need be complete specifications; this is a virtue of the
approach and, for example, allows us to avoid the frame problem. The Promela

communicating finite state automata: communicating finite state automata:
basic call basic call +features
7 7
7 7
develop , implement by develop , implement by
together together
7/ 7/
K K
BC: idle: ... BC: idle: ...
[I<>(x==on) | validate optimise [I<>(x==on) | validate optimise
tclose : ... O tclose : ... Q
dynamic| i
. * inline:... : "
CFU: analysis Q static analysis
(p—>(rPq))
Properties Promela Properties Promela

jd jd
\ A \ A

State—space State—space

(a) Basic Service (b) Basic Service + Features

Fig. 1. Overall Approach

description on the rhs of figure 1(a) is regarded as the implementation; a crucial
step therefore is validation of the implementation, i.e. checking satisfaction of
the properties, using SPIN. Initial attempts fail, due to state-explosion, however,
an examination of the underlying state-space (bottom of figure 1(a)) leads us to
discover simple, but very effective optimisations.

The second phase, when we add features, is depicted in figure 1(b). Again,
the starting point is finite state automata and properties. The Promela imple-
mentation is augmented with the new feature behaviour, primarily through the
use of an inline function (see Section 9.1), and then validated. Interaction de-
tection analysis takes two forms: static analysis, (syntactic) inspection of the
Promela code, and dynamic analysis, reasoning over combinations of sets of log-
ical formulae and configurations of the feature subscribers, using SPIN. The
results of (either) analysis is interaction detection. The distinction between the
two analyses is novel, we discuss this in more detail in Section 11.

3 Background— Features and Interactions

Control of the progress of calls is provided by a service at an exchange (a stored
program control exchange). This software must respond to events such as handset

on or off hook, as well as sending control signals to devices and lines such as
ringing tone or line engaged. A service is a collection of functionality that is
usually self-sustaining. A feature is additional functionality, for example, a call
forwarding capability, or ring back when free; a user is said to subscribe to a
feature. When features are added to a basic service, there may be interactions
(i.e. behavioural modifications) between both the features offered within that
service, as well as with features offered in another service.

For example, if a user who subscribes to call waiting (CW) and call forward
when busy (CFB) is engaged in a call, then what happens when there is a further
incoming call? (Full details of all features mentioned here are given in section 7.)
If the call is forwarded, then the CW feature is clearly compromised, and vice
versa. In either case, the subscriber will not have his/her expectations met. This
is an example of a single user, single component (SUSC) [5] interaction — the
conflicting features are subscribed to by a single user. More subtle interactions
can occur when more than one user/subscriber are involved, these are referred to
as multiple user, multiple component (MUMC) interactions. Consider when user
A subscribes to originating call screening (OCS), with user C on the screening
list, and user B subscribes to CFB to user C. If A calls B, and the call is
forwarded to C, as prescribed by B’s CFB, then A’s OCS is compromised. If
the call is not forwarded, then we have the converse. These kind of interactions
can be particularly difficult to detect (and resolve), since different features are
activated at different stages of a the call.

Ideally, interactions are detected and resolved at service creation time, though
this may not always be possible when third-party or legacy services are involved
(for example, see [3]).

4 Basic Call Service

Figure 2 gives a diagrammatic representation of the automaton for the basic call
service (following the IN (Intelligent Networks) model, distributed functional
plane [17]).

States to the left of the idle state represent terminating behaviour, states
to the right represent originating behaviour. Events observable by service sub-
scribers label transitions: user-initiated events at the terminal device, such as
(handset) on and (handset) off, are given in plain font, network-initiated events
such as unobt and engaged are given in italics. Note that there are two “ring”
events, oring and tring, for originating and terminating ring tone, respectively;
call behaviour is asymmetric. Not all transitions are labelled.

The automata must communicate, in order to coordinate call set up and
clear down. To implement communication, we associate a channel with each call
process. Each channel has capacity for at most one message: a pair consisting of
a channel name (the other party in the call) and a status bit (the status of the
connection). Figure 3 describes how messages are interpreted.

disconn dial

N

@nected

Fig. 2. Basic Call - States and Events

5 Basic Call Service Properties in LTL

Below, we give a set of temporal properties describing the behaviour of the basic
call service. Before doing so, we make a few comments about our use of LTL in
SPIN.

When using SPIN’s LTL converter (or otherwise — we use the conversion
tool of Etessami, [9]) it is possible to check whether a given property holds for
All Ezecutions or for No Ezecutions. A universal quantifier is implicit at the
beginning of all LTL formulas and so, to check an LTL property, it is natural to
choose the All Ezecutions option. However, we sometimes wish to check that a
given property (p say) holds for some state along some execution path (or “p is
possible”), we can do so by showing that “()p holds for No Ezecutions” is not
true (via a never-claim violation), which is equivalent. In Property 1 below, we
use the notation E to mean for some path in place of the usual implicit for all

Contents of Channel A Interpretation
empty Aisfree
(A,0) A isengaged, but not connected
(B,0) A isengaged, but not connected

B istermnating party
B is attempting connection

(B,1) If channel B contains (A,1) then A and
B are connected

Fig. 3. States of a Communication Channel in the Protocol

paths. Additionally, we can use SPIN to prove properties of the form “p is true
in the next state relative to process 7”. (That is p is true after the next time
that process ¢ is active.) This is done via judicious use of SPIN’s _last operator,
details are omitted here. We use the shorthand oj,,.; to mean the next global
state in which process proci has made a local transition.

We adopt some notation of [6]: the operators YW (weak until) and P (pre-
cedes), defined by fWg =[]f V (fUg) and fPg =—-(—fUg).

The LTL is given here alongside each property. This involves referring to
variables (eg. dialled and connect) contained within the Promela code (an ex-
tract of which is given in section 6.1). We use symbols to denote predicates, for
example “[|]p where p is dialled[i] == i”. This provides a neater representation,
and the LTL converter requires properties to be given in this way.

Property 1 A connection between two users is possible.

That is: E<Op, where p is connect[i].to[j] == 1, for i # j.

Property 2 If you dial yourself, then you receive the engaged tone before re-
turning to the idle state.

That is: [|[(p = ((-r)Wq)) where p is dialled[i] == i, q is network_event[i] ==
engaged and r is user[proci]@idle.

Property 3 Busy tone or ringing tone will directly (that is, the next time that
the process is active) follow calling.

That is: [[(p = oprociq) Where pis event[i] == call and ¢ is ((network_event[i] ==
engaged) V (network_event[i] == oring)).

Property 4 The dialled number is the same as the number of the connection
attempt.

That is: [|(p — ¢) where pis dialled[i] == j and q is partner[i] == chan_namel[j].

Property 5 If you dial a busy number then either the busy line clears before a
call is attempted, or you will hear the engaged tone before returning to the idle
state.

That is: [J[((p Av At) = (((ms)W(w)) V ((-r)WVq))) where p is dialled[i] ==
J, v is event[i] == dial, t is full(chan-namel[j]), s is event[i] == call, w is
len(chan_name[i]) == 0, r is user[proci|@idle and q is network_event[i] ==
engaged, for i # j.

Note that the operator len is used to define w in preference to the function

empty (or nfull). This is because SPIN disallows the use of the negation of these
functions (and —w arises within the never-claim).

Property 6 You can not make a call without having just (that is, the last time
that the process was active,) dialled a number.

That is: [J(p — q) where p is user[proci]Qcalling and q is event[i] == dial.

6 Basic Call Service in Promela

6.1 Unoptimised Code

Each call process (see figure 2) is described in Promela as an instantiation of the
(parameterised) proctype User declared thus:

proctype User (byte selfid;chan self)

Promela is a state-based formalism, rather than event-based. Therefore, we
represent events by (their effect on) variables, and states (e.g. calling, dialling,
etc.) by labels. Since each transition is implemented by several compound state-
ments, we group these together as an atomic statement, concluding with a goto.

An example of the original (unoptimised) Promela code (as described in
[4]) associated with the idle, dialling, calling and oconnected states and their
outgoing transitions is given below. (For the full optimised code, contact the
authors.) The global/local variables and parameters should be self-explanatory.
We note in passing that any variable about which we intend to reason should
not be updated more than once within any atomic statement; also d_steps, while
more efficient than atomic steps, are not suitable here because they do not allow
a process to jump to a label out of scope. There are numerous assertions within
the code, particularly at points when entering a new (call) state, and when
reading and writing to communication channels.

idle:
atomicq{
assert(dev == on);
assert (partner[selfid]==null);
/* either attempt a call, or receive one */
if
: empty(self)->event[selfid]=off;
dev[selfid]=off;
self!self,0;goto dialling

/* no connection is being attempted, go offhook */

/* and become originating party */

:: full(self)-> self?<partner[selfid],messbit>;

/* an incoming call */

if
::full(partner[selfid])->
partner[selfid] 7<messchan,messbit>;
if
: messchan == self /* call attempt still there */
->messchan=null;messbit=0;goto talert
: else —> self?messchan,messbit;

/* call attempt cancelled */
partner[selfid]=null;partnerid=6;
messchan=null;messbit=0;goto idle

fi
: rempty (partner[selfid])->
self?messchan,messbit;

/* call attempt cancelled */
partner[selfid]=null;partnerid=6;
messchan=null; messbit=0; goto idle

fi
fi};

dialling:
atomicq{

assert(dev == off);assert(full(self));
assert (partner[selfid]l==null);
/* dial or go onhook */
if
: event[selfid]l=dial;
/% dial and then nondeterministic choice of called party */
if
:: partner[selfid] = zero;dialled[selfid] = O;
partnerid=0

:: partner[selfid] = one;dialled[selfid] = 1;
partnerid=1
:: partner[selfid] = two;dialled[selfid] = 2;

partnerid=2
: partner[selfid] = three;dialled[selfid] = 3;
partnerid=3
:: partnerid= 7;
fi
: event[selfid]=on; dev[selfidl=on;
self?messchan,messbit;assert (messchan==self);
messchan=null;messbit=0;goto idle
/*go onhook, without dialling */
fil};

calling:/* check number called and process */
atomicq{
event[selfid]=call;
assert(dev == off);assert(full(self));
if
: partnerid==7->goto unobtainable
: partner[selfid] == self -> goto busy
/* invalid partner */
((partner[selfid] !=self)&&(partnerid!=7)) ->
if
:: empty(partner[selfid])->partner[selfid]!self,0;
self?messchan,messbit;
self!partner[selfid],0;goto oalert
/* valid partner, write token to partner’s channelx/
:: full(partner[selfid]) -> goto busy
/* valid partner but engaged */
fi
fi};

oconnected:
atomic{
assert (full(self));assert(full (partner[selfid]));
/% connection established */
connect[selfid] .to[partnerid] = 1;
goto oclosel};

Any number of call processes can be run concurrently. For example, assum-
ing the global communication channels zero, one, etc. a network of four call
processes is given by:

atomic{run User(0,zero) ;run User(l,one); run User(2,two);run User(3,three)}

6.2 Options and Optimisation

Initial attempts to validate the properties against a network of four call processes
fail because of state-explosion. In this section we examine the causes, the appli-
cability of standard solutions and how the the Promela code can be transformed
to optimise the state-space.

SPIN Options The default Partial order reduction (POR) option was applied
throughout, but did not reduce the size of the state-space sufficiently. This is
due to the scarcity of statically defined “safe” operations (see [15]) in our model.
Any assignments to local variables are embedded in large atomic statements that
are not safe. Furthermore the use of non-destructive read operations (to test the
contents of a channel) prevents the assignment of exclusive read/send status to
channels. Such a test is crucial: often behaviour depends on the exact contents
of a channel.

States can be compressed using minimised automaton encoding (MA) or com-
pression (COM). When using the former, it is necessary to define the maximum
size of the state-vector, which of course implies that one has searched the en-
tire space. However one can often find a reasonable value by choosing the (un-
compressed) value reported from a preliminary verification with a deliberate
assertion violation. While MA and COM together give a significant memory
reduction, the trade-off in terms of time was simply unacceptable.

Other Optimisations A simple but stunningly effective way to reduce the
state-space is to ensure that each visit to a call state is indeed a visit to the
same underlying Promela state. This means that as many variables as possible
should be initialised and then reset to their initial value (reinitialised) within
Promela loops. For example, in virtually every call state it is possible to re-
turn to idle. An admirable reduction is made if variables such as messchan and
messbit are initialised before the first visit to this label (call state), and then
reinitialised before subsequent visits. This is so that global states that were pre-
viously distinguished (due to different values of these variables at different visits
to the idle call state) are now identified.

The largest reduction is to be found when such variables are routinely reset
before progressing to the next call state. Unfortunately, this is not always possi-
ble, as it would result in variables about which we wish to reason being updated
more than once within an atomic statement (as discussed in section 6.1). How-
ever, there is a solution: add a further state where variables are reinitialised. For
example, we have added a new state preidle, where the variables network_event
and event are reinitialised, before progression to idle. Therefore every occurrence
of goto idle becomes goto preidle.

We note that although the (default) data-flow optimisation option available
with SPIN attempts to reinitialise variables automatically, we have found that
this option actually increases the size of the state-space of our model. This is
due to the initial values of our variables often being non-zero (when they are of
type mtype for example). SPIN’s data-flow optimisation always resets variables
to zero. Therefore we must switch this option off, and reinitialise our variables
manually.

The size of the state-space can be greatly reduced if any reference to (update
of) a global variable which is not needed for verification, is commented out.
Furthermore, by including all references to all of the event variables (say) when
any such variable is needed for verification (see for example Property 3), the
size of the state-space can be increased by an unnecessarily large amount. For

10

example, to prove that Property 3 holds for user[i], we are only interested in
the value of event[i], not of event[j] where ¢ # j. The latter do not need to be
updated. Thus an inline function, event_action(eventq) has been introduced to
enable the update of specific variables. That is, it allows us to update the value
of event[i] to the value eventq, and leave the other event variables set to their
default value. So, for example, if i = 0, the event_action inline becomes:

inline event_action (eventq)
{
if
::selfid==0->event [selfid]l=eventq
::selfid!=0->skip
fi
}

Any reference to this inline definition is merely commented out when no
event variables are needed for verification. (Another inline function is included
to handle the network_event variables in the same way.)

We note that this reduction is not implemented in SPIN. SPIN does, however,
issue a warning “variable never used” in situations where such a reduction would
be beneficial.

These transformations not only lead to a dramatic reduction of the underlying
state-space, the search depth required was reduced to 10 percent of the initial
value, but they do not involve abstraction away from the original model. On the
contrary, if anything, they could be said to reduce the level of abstraction.

6.3 Basic Call Service Validation

It was possible to verify all six properties well within our 1.5 Gbyte memory limit.
State compression was used throughout. The verification of property 3 took the
longest (21 mins) and a greater search-depth was reached in this case. This is
partially due to the fact that both the event and network_event variables for the
process under consideration had to be included for this property. In addition,
the use of the _last operator precludes the use of partial order reduction, which
could have helped to reduce the complexity in this case.

7 Features

Now that the state-space is tractable, we can commence the second phase: adding
a number of features to the basic service.

7.1 Features
The set of features that we have added include:

— CFU - call forward unconditional All calls to the subscriber’s phone
are diverted to another phone.

— CFB — call forward when busy All calls to the subscriber’s phone are
diverted to another phone, if and when the subscriber is busy.

11

— OCS - originating call screening All calls by the subscriber to numbers
on a predefined list are inhibited. Assume that the list for user x does not
contain .

— ODS — originating dial screening. The dialling of numbers on a prede-
fined list by the subscriber is inhibited. Assume that the list for user x does
not contain x.

— TCS — terminating call screening Calls to the subscriber from any num-
ber on a predefined list are inhibited. Assume that the list for user z does
not contain z.

— RBWF — ring back when free The subscriber has the option to call the
last recorded caller to his/her phone.

Two further features that are straightforward to implement are originating call
behaviour (e.g. a pay phone) and terminating call behaviour (e.g. a teen line).
However we give no details of such features here.

We do not give automata for all the features, but in figure 4 we give the
additional behaviour prescribed by the RBWF feature. Notice that this feature
introduces a new call state (namely ringback); it is the only feature to do so.

on
of f dial callback

Fig. 4. Part of the Finite State Automaton for RBWF

8 Temporal Properties for Features

The properties for features are more difficult to express than those for the basic
service. In order to accurately reflect the behaviour of each feature great atten-
tion must be paid to the scope of each property (within the corresponding LTL
formula). For example, in property 8, it is essential that (for the CFB feature
to be invoked) the forwarding party has a full communication channel whilst the
dialling party is in the dialling state. This can only be expressed by stating that
the forwarding party must have a full channel continuously between two states,
the first of which must occur before the dialling party enters the dialling state,
and the second after the dialling party emerges from the dialling state.

The values of the variables i, j and k depend on the particular pair of features
and the corresponding property that is being analysed. These variables are there-
fore updated prior to each verification either manually (by editing the Promela

12

code directly), or automatically during the running of a model-generating script
(see section 12).

Property 7 — CFU Assume that user j forwards to k.

If user i rings user j then a connection between i and k will be attempted before
user i hangs up.

That is: [|(p — (rPq)), where pis dialled[i] == j, r is partner[i] == chan_name[k],
and q is dev[i] == on.

Property 8 — CFB Assume that user j forwards to k.

If user i rings user j when j is busy then a connection between i and k will be
attempted before user i hangs up.

That is: [[(((uA)A((uA)U((—u)AtAp))) — (rPq)), where pis dialled[i] == j, t
is full(chan_namelj]), r is partner[i] == chan_namelk], u is user[proci|Qdialling
and ¢ is dev[i] == on.

Property 9 — OCS Assume that user i has user j on its screening list.
No connection from user i to user j is possible.
That is: [J(—p), where p is connect[i].to[j] ==

Property 10 — ODS Assume that user i has user j on its screening list.
User i@ may not dial user j .
That is: [|(—p), where p is dialled[i] == j.

Property 11 — TCS Assume that user i has user j on its screening list.
No connection from user j to user i is possible.
That is: [|(—p), where p is connect[j].to[i] ==

Property 12 — RBWF Assume that user j has automatic call back.
It is possible for an attempted call from i to j to eventually result in a successful
call from j to i (without j ever dialling i) .

That is: E(o((pAtAoq) A(rPq)), where p is dialled[i] = j, q is dialled[j] = 1,
r is connect[j].to[i] == 1 and t is event[i] == call.

9 The Features in Promela

Relevant changes that need to be made to the Promela model are given below.
Before this, we make a few observations:

— To implement the features we have included a “feature_lookup” function (see
below) that implements the features and computes the transitive closure of
the forwarding relations (when such features apply to the same call state).

- We distinguish between call and dial screening; the former means a call
between user A and B is prohibited, regardless of whether or not A actually
dialled B, the latter means that if A dials B, then the call cannot proceed,
but they might become connected by some other means. The latter case
might be desirable if screening is motivated by billing. For example, if user
A dials C (alocal leg) and C forwards calls to B (a trunk leg) then A would
only pay for the local leg.

13

— Currently we restrict the size of the lists of screened callers (relating to the
OCS, ODS and TCS features) to one. That is, we assume that it is impossible
for a single user to subscribe to two of the same screening feature. This is
sufficient to demonstrate some feature interactions, and limits the size of the
state-space.

— The addition of RBWF, while straightforward, increases the complexity of
the underlying state-space greatly. This is due both to the addition of the
new ringback state and to the fact that it involves recording (in a structure
indexed by call processes) the last connection attempt. The issue is not just
that there is a new global variable, but that call states that were previously
identified are now distinguished by the contents of that record (see discussion
about variable reinitialisation in section 6.2).

— To ensure that all variables are initialised, we use 6 as a default value. This
is particularly useful when a user does not subscribe to a particular feature.
The value 7 is used to denote both an unobtainable number (e.g. an incorrect
number) and to denote the “button press” in RBWF. We do not use an
additional value for the latter, so as not to increase the state space.

9.1 Implementation of features: the feature_lookup inline

In order to enable us to add features easily, all of the code relating to feature
behaviour is now included within an inline definition. The feature_lookup inline
is defined as follows:

inline feature_lookup(part_chan,part_id,st)
{
do
:: ((st==st_dial)&&(0DS[selfid]==part_id))->st=st_unobt
:: ((st==st_dial)&&(RBWF [selfid]==1)&& (part_id==7))->st=st_rback
:: ((part_id!=7)&&(st==st_dial)&&(CFU[part_id]!=6))
->part_id=CFU[part_id] ;part_chan=chan_name[part_id]
1: ((part_id!=7)&&(st==st_dial) && (CFB[part_id] !=6) &&(len(part_chan)>0))
->part_id=CFB[part_id] ;part_chan=chan_name [part_id]
:: ((st==st_call)&&(0CS[selfid]==part_id))->st=st_unobt
::((st==st_call)&&(TCS[part_id]==selfid))->st=st_unobt
::else—->break

The parameters part_chan, part_id, and st take the values of the current partner,
partnerid and state of a user when a call to the the feature_lookup inline is made.
Statements within feature_lookup pertaining to features that are not currently
active are automatically commented out (see section 12).

We note that in some sense feature_lookup encapsulates centralised intelli-
gence in the switch, as it has “knowledge” of the status of processes and data con-
cerning feature configuration. While on the one hand one might argue that this
is against the spirit of an IN switch, on the other hand we maintain that MUMC
feature interactions simply cannot be detected in a completely distributed ar-
chitecture.

14

9.2 Feature Validation

Each feature was validated (via SPIN verification) against the appropriate set
of properties (1-12). For brevity, we do not give details here.

10 Static Analysis

Static analysis is an analysis of the structure of the feature descriptions, i.e. an
examination of the syntaz. Specifically, we look for overlapping guards (two or
more guards which evaluate to true, under an assignment to variables) with di-
verging consequences. A more operational explanation is the detection of shared
triggers of features. Because we have collected additional feature behaviour to-
gether within the inline feature_lookup, we need only consider overlapping guards
within this function. If there is an overlap, and the consequences diverge, then

we have non-determinism and hence a potential interaction.
For example, consider the following overlap between CFU and CFB:

:: ((part_id!=7)&&(st==st_dial)&&(CFU[part_id]!=6))
->part_id=CFU[part_id]; part_chan=chan_name[part_id]

:: ((part_id!=7)&&(st==st_dial) &&(CFB[part_id] !=6)&&(len(part_chan)>0))
->part_id=CFB[part_id];part_chan=chan_name[part_id]

The overlap occurs under the assignment st = st_dial, CFU|[part_id] = x,
len(part_chan) > 0, and CFBlpart_id] = y where x,y # 6. When = # y, the
first consequent assigns x to part_id, the second assigns y to part_id. These are
clearly divergent, and so we have found an interaction.

SUSC and MUMC interactions are distinguished by considering the roles of
part_id and sel fid as indices. If the same index is used for the feature sub-
scription, e.g. CFU|[part_id] and CF B[part_id], then the interaction is SUSC, if
different indices are used, it is MUMC. In this example, the interaction is clearly
SUSA% overlap is not always possible. For example, consider the first two choices:

:: ((st==st_dial)&&(0DS[selfid]==part_id))
->st=st_unobt

:: ((st==st_dial)&&(RBWF [selfid]==1)&& (part_id==7))
->st=st_rback

As 7 is not a valid number to be in a screening list there is no overlap and
hence no interaction.

In all, there are 7 pairs to consider (4 clauses for st_dial, leading to 6 pairs,
and two clauses for st_call, leading to one pair). Results of the static analysis
are given in the tables of figure 5. A |/ indicates an interaction whereas a x
indicates none. The tables are symmetric.

Static analysis is a very simple yet very effective mechanism for finding some
interactions — those which arise from new non-determinism. It is based on equa-
tional reasoning techniques and the process of finding overlapping guards (known
as superposition) can be automated. The process of considering whether the con-
sequent statements are divergent is more difficult and a complete solution would
require a thorough axiomatic description of the Promela language. However, it

15

CFU | CFB OCS | ODS | TCS | RBWF CFU | CFB | OCS | ODS | TCS | RBWF
CFU | - 4 x x x x CFU | - x x V4 x x
crB | 4/ | - x x x x cFB | x - x |V x x
OCs X X - X X x OCS X X - X X X
OoDS X X X - X X OoDS 4/ 4/ X - X X
TCS X X X X - X TCS X X X X - X
RBWF| x x x x - - RBWF| x x x x x -
(@) susc (b) MUMC

Fig. 5. Feature Interaction Results - Static Analysis

would be possible to automate a relatively effective approach based on simple
assignment. For the purposes of this paper, we rely on manual inspection of the
function feature_lookup. In any case, we note that the ease and contribution of
static analysis depends very much on the structure of the specification.

We now turn our attention to a dynamic form of analysis.

11 Dynamic Analysis

Dynamic analysis depends upon logical properties that are satisfied (or not) by
pairs of users subscribing to combinations of features.

Consider two users, ul and u2. Then uly, U u2y, is the configuration, or
scenario, in which ul subscribes to feature f; and 42 subscribe to feature f;.
Two features f; and f; interact if a property that holds for f; alone, no longer
holds in the presence of another feature f;. More formally stated: for a property
¢, we have uly, = ¢ but uly, Uu2y, = ¢. When ul == u2, then the interaction
is SUSC, otherwise it is MUMC.

Note that the analysis is pairwise, known as 2-way interactions. While at first
sight this may be limiting, empirical evidence suggests there is little motivation
to generalise, 3-way interactions that are not detectable as a 2-way interaction
are exceedingly rare [19].

An initial approach is to consider any property above as a candidate for ¢.
However, it is easy to see that in this case all features interact. A more selective
approach is required: we consider only the properties associated with the features
under examination, i.e. for features f; and f;, consider only properties ¢; and
¢j. An SUSC (MUMC) interaction between f; and f;, resulting from a violation

of property ¢; is written (fi,fj)S ((fiafj)M)-

11.1 Dynamic Analysis — Feature Interaction results

The tables in figure 6 gives the interactions found for pairs of features in both
the SUSC case and the MUMC case. A 4/ in the row labelled by feature f; means
that the property ¢; is violated whereas a x indicates that no such violation has
occurred. Two features f; and f; interact if and only if there is a 4/ in position

16

CFU | CFB | OCS | ODS | TCS | RBWF CFU | CFB | OCS | ODS | TCS | RBWF
CFU | - v x x x x CFU | +/ V4 X x x x
CFB v/ X X X X CFB v/ 4 X x X X
OCs X X - X x x OCS x x X X x x
OoDS X X X - X X OoDS v/ v/ X x X X
TCS X X X X - X TCS X x X X X X
RBWF| 4/ | x VI VI V- RBWF| x « |V [V 1V x
(8) SUSC (b) MUMC

Fig. 6. Feature Interaction Results - Dynamic Analysis

(fi, fj) and/or a 4/ in position (f;, f;). BC is excluded as every feature interacts
with it in some way.

New SUSC interactions are detected by the dynamic analysis, namely those
associated with the RBWF feature. For example, there is an (RBWF,CFU)g
interaction because the CFU feature prevents the record variable pertaining to
the subscriber being set to a non-default value. Therefore the subscriber is unable
to perform a ring-back.

The tables are not symmetric. For example, there is an (ODS, CFU)) inter-
action, but not a (CFU,ODS))s interaction. To understand why, observe that
static analysis detects an MUMC interaction under the assignment ODS[0] = 1,
and CFU[1] = 2. Dynamic analysis also detects an interaction violation — in-
deed our analysis script (see section 12) generates exactly this scenario: an
(ODS,CFU))s interaction with 4 =0 and j = 1 (i.e. user 0 rings user 1). Con-
sider those computations where feature_lookup takes the ODS branch. One
could understand this as ODS having precedence. There is no interaction in this
case: both property 7 and property 10 are satisfied. However, there is a compu-
tation where the C'F'U branch is taken; in this case CFU has precedence and
property 10 is violated because user 0 has dialled user 1 — before the call is for-
warded to user 2 (although clearly property 7 is satisfied). Often, understanding
why and how a property is violated will give the designer strong hints as to how
to resolve an interaction.

The interactions uncovered by dynamic analysis depend very much on the
properties and how the features are modelled. When the properties are adequate,
we would expect every statically detected interaction to be detected dynami-
cally, but not vice versa. This is borne out by our case-study. We may regard the
static analysis step as a cheap method of uncovering some interactions, as well
as providing an indication of whether or not we have a good set of behavioural
properties. But, note that the properties are not complete descriptions, in par-
ticular they do not state what should not happen (i.e. the frame problem). For
example, one might expect a (CFU,TCS) s interaction but this is not the case
because although TCS will block the forwarded call, the partner variable will
be set appropriately, thus satisfying property 7. Perhaps one should strengthen
the property for CFU, to insist that the connection is made (rather than just
setting partner appropriately). But it is not that simple, the forwarded party

17

may be engaged, or have a forwarded feature (or any other kind of feature); the
possibilities are endless. Therefore, we consider the CFU property to be quite
adequate.

12 Automatic Model Generation and Feature Interaction

Originally, before features were added to the basic call model, global variables
were manually “turned off” (ie. commented out) or replaced by local variables
when they are not needed for verification. The addition of features has led to
even more variables requiring to be selectively turned on and off, and set to
different values. For example if an originating call screening feature is selected the
orig_call_sreen array has to be included and its elements set to the appropriate
values. In addition the feature_lookup inline must be amended to include those
lines pertaining to the originating call screening feature. If no ring back when
free feature is chosen, the entire ringback call state must be commented out.

Making all of the necessary changes before every SPIN run was extremely
time-consuming and error prone. Therefore, we now use a Perl script to enable us
to perform these changes automatically. Specifically this enables us to generate,
for any combination of features and properties, a model from a template file.
Each generated model also includes a header containing information about which
features and properties have been chosen in that particular case, which makes
it easier to monitor model-checking runs.

Dynamic feature interaction analysis is combinatorially explosive: we must
consider all pairs of features and combinations of suitable instantiations of the
free variables 7,5 and k occurring in the properties. For example, for the SUSC
case alone this gives 36 different scenarios (though not all are valid). To ease
this burden and to speed up the process, a further Perl script is used to enable

— systematic selection of pairs of features and parameters i,j and k, and gen-
eration of corresponding model,

— automatic SPIN verification of model and recording of feature interaction
results.

Note that scenarios leading to feature interactions are recorded. Depending
on the property concerned, a report of 1 error (properties 7-11) or 0 errors
(property 12) from the SPIN verification indicates an interaction. Once (if) an
SUSC interaction is found the search for MUMC interactions commences. If an
MUMC interaction is found the next pair of features is considered. The following
example of output demonstrates the complete results for CFU and CFB with
property 7.

/*The features are 1 and 2 */

/*New combination of features:CFU[0]=1 and CFB[0]=0 */
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[0]=1 %/
with property 7
with parameters 0,0 and 1 errors: O

18

with parameters 1,0 and 1 errors: O
with parameters 2,0 and 1 errors: 0O

with parameters 3,0 and 1 errors: O

/*New combination of features:CFU[0]=1 and CFB[0]=2 %/
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: SUSC

/*New combination of features:CFU[0]=1 and CFB[1]=0 */
potential loop, test seperately

/*New combination of features:CFU[0]=1 and CFB[1]=1 */
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[1]=2 %/
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: MUMC

13 Conclusions and Future Directions

We have used Promela and SPIN to analyse the behaviour of a software artifact
— feature interaction in a telecomms service. Our approach involves four differ-
ent levels of abstraction: communicating finite state automata, temporal logic
formulae, Promela specifications, and the underlying labelled transition systems
and Biichi automata.

We have demonstrated the approach with an analysis of a basic call service
with six features, involving four users with full functionality. There are two types
of analysis, static and dynamic; the latter is completely automated, making
extensive use of Perl scripts to generate the SPIN runs.

The distinction between static and dynamic analysis is novel; the latter is
more comprehensive, but the former provides a simple yet effective initial step,
and a check for the temporal properties upon which the latter depends.

State-explosion is a major concern in feature interaction analysis: under-
standing how a Promela model can be optimised, in order to generate tractable
state-spaces, is important. We have outlined a simple but effective optimisa-
tion technique for Promela that does not abstract away from the system being
modelled, on the contrary, it may be understood as reducing the gap between
the Promela representation and the system under investigation. The technique
involves reinitialising variables and results in a reduction of 90 per cent of the
state-space. Thus, we overcome classic state-explosion problems and our inter-
action analysis results are considerably more extensive than those in [20].

Finally, we note that understanding why an interaction occurs can help the
redesign process. For example, static analysis indicates shared triggers and dy-
namic analysis indicates in-built precedences between features, when the results
of the analysis are not symmetric. Both can indicate how to alter precedences
between features, in order to resolve interactions. How to do so in a structured
way is a topic for further work.

19

Acknowledgements The authors thank Gerard Holzmann for his help and
advice, and the Revelation project at Glasgow for computing resources. The
second author was supported by a Daphne Jackson Fellowship from the EPSRC.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunica-
tions Systems. I0S Press (Amsterdam), May 1994.

M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and
Software Systems, volume VI. IOS Press, Amsterdam, 2000.

M. Calder, E. Magill, and D. Marples. A hybrid approach to software interworking
problems: Managing interactions between legacy and evolving telecommunications
software. IEE Proceedings - Software, 146(3):167-180, June 1999.

M. Calder and Alice Miller. Analysing a basic call protocol using Promela/XSpin.
In [13], pages 169-181, 1998.

E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, and W. K. Schnure. A feature
interaction benchmark for IN and beyond. In [1], pages 1-23, May 1994.

Marsha Chechik and Dimitrie O. Paun. Events in property patterns. In [7], pages
154-167, 1999.

D. Dams, R. Gerth, S. Leue, and M. Massink, editors. Theoretical and Practical
Aspects of Spin Model Checking: Proceedings of the 5th and 6th International Spin
Workshops, volume 1680 of Lecture Notes in Computer Science. Springer-Verlag,
1999.

P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in Telecom-
munication Networks IV. IOS Press (Amsterdam), June 1997.

K. Etessami. Stutter-invariant languages, w-automata, and temporal logic. In [11],
pages 236-248, 1999.

A. Felty and K. Namjoshi. Feature specification and automatic conflict detection.
In [2], pages 179-192, May 2000.

Nicolas Halbwachs and Doron Peled, editors. Proceedings of the eleventh Inter-
national Conference on Computer-aided Verification (CAV 99), volume 1633 of
Lecture Notes in Computer Science, Trento, Italy, July 1999. Springer-Verlag.

D. Hogrefe and S. Leue, editors. Proceedings of the Seventh International Confer-
ence on Formal Description Techniques (FORTE ‘94), volume 6 of International
Federation For Information Processing, Berne, Switzerland, October 1994. Kluwer
Academic Publishers.

Gerard Holzmann, Elie Najm, and Ahmed Serhrouchni, editors. Proceedings of the
Jth Workshop on Automata Theoretic Verification with the Spin Model Checker
(SPIN ‘98), Paris, France, November 1998.

Gerard J. Holzmann. The model checker Spin. IEEE Transactions on Software
Engineering, 23(5):279-295, May 1997.

Gerard J. Holzmann and Doron Peled. An improvement in formal verification. In
[12], pages 197-211, 1994.

G.J. Holzmann and Margaret H. Smith. A practical method for the verification
of event-driven software. In Proceedings of the 1999 international conference on
Software engineering (ICSE99), pages 597-607, Los Angeles, CA, USA, May 1999.
ACM Press.

IN Distributed Functional Plane Architecture, recommmendation q.1204, ITU-T
edition, March 1992.

20

18.

19.

20.
21.

K. Kimbler and L.G. Bouma, editors. Feature Interactions in Telecommunications
and Software Systems V. IOS Press (Amsterdam), September 1998.

M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Results of the second feature
interaction contest. In [2], pages 311-325, May 2000.

M. Plath and M. Ryan. Plug-and-play features. In [18], pages 150-164, 1998.

M. Thomas. Modelling and analysing user views of telecommunications services.
In /8], pages 168-182, 1997.

