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Abstract. Simultaneous reachability analysis (SRA) is a recently pro-
posed approach to alleviating the state space explosion problem in reach-

ability analysis of concurrent systems. The concept of SRA is to allow a
global transition in a reachability graph to contain a set of transitions of
di�erent processes such that the state reached by the global transition is

independent of the execution order of the associated process transitions.
In this paper, we describe how to apply the SRA approach to concurrent
systems for model checking. We �rst describe an SRA-based framework

for producing a reduced state graph that provides su�cient information
for model checking. Following this framework, we present an algorithm
that generates a reduced state graph for the extended �nite state machine

(EFSM) model with multiple ports. Empirical results indicate that, our
SRA reduction algorithm performs as good as or better than the partial
order reduction algorithm in SPIN.

1 Introduction

For a given �nite-state concurrent system and a temporal logic formula specify-
ing some properties, model checking determines whether the concurrent system
satis�es the speci�ed properties [3]. Model checking has been used successfully
to verify computer hardware and software designs. The major challenge in model
checking is dealing with the state space explosion problem.

In the last ten years or so, the partial order reduction approach has been
investigated for alleviating the state space explosion problem. The basic idea
of partial-order reduction can be explained by the following example. Consider
a global state G =(s1; s2; :::; sn) of an n-process concurrent system, where si,
1 � i � n, is a local state of process Pi. Assume that each si, 1 � i � n, has
exactly one local transition to another local state si

0 of Pi and that these n local
transitions are enabled (i.e., eligible for execution) and independent from each
other (i.e., the result of executing these transitions is independent of execution
order). The traditional reachability analysis generates n! di�erent interleavings
of these n transitions from G to G0=(s01; s

0
2; : : : ; s

0
n). According to partial-order

? This work was supported in part by an IBM fellowship and NSF grant CCR-9901004
?? Corresponding author



reduction, only one of these n! sequences of n transitions is generated from G to
G0. Earlier partial order reduction methods were developed for verifying deadlock
freedom and other safety properties, while recent partial order reduction methods
provide solutions to the model checking problem [3], [4],and [11] .

Simultaneous reachability analysis (SRA) is a recently proposed approach
to alleviating the state space explosion problem. SRA di�ers from partial-order
reduction in that the former allows a global transition in a reachability graph to
contain a set of independent local transitions. Consider the example mentioned
earlier. According to SRA, only one global transition is generated from G to G0,
with the global transition being the set of these n local transitions. Ozdemir
and Ural developed an SRA-based reachability graph generation algorithm for
the communicating �nite state machine (CFSM) model [10]. Later Schoot and
Ural improved the earlier algorithm [15] and showed that combining their new
algorithm with partial order reduction techniques improves the performance of
partial-order reduction for the veri�cation of CFSM-based concurrent systems
[14].

In this paper, we describe how to apply the SRA approach to concurrent
systems for model checking. In section 2, we describe a framework for generating
a simultaneous reachability graph (SRG) for model checking. In section 3, we
de�ne the extended �nite state machine (EFSM) model with multiple ports. In
section 4, we de�ne the dependency relation for the multi-port EFSM model.
In section 5, we present an SRG generation algorithm for the multi-port EFSM
model. In section 6, we present preliminary results of our SRA approach to model
checking. Finally we present our conclusions in section 7.

2 A Framework for Generating an SRG for Model

Checking

In this section, we describe a framework for generating an SRG that provides
su�cient information for model checking. Let M be a concurrent system con-
taining processes P1; P2; : : : ; Pn. Assume that each process Pi, 1 � i � n, is
represented as a state transition system. Processes may communicate with each
other by accessing shared variables and/or message queues. Let RG(M) denote
the full reachability graph of M and let SRG(M) denote a reduced reachability
graph of M according to SRA. A transition of some process in M is referred to
as a transition of M . An edge in RG(M) is a transition of M , while an edge in
SRG(M) is a set of transitions of M .

Let t and t0 be two transitions. t and t0 are process-dependent if they belong
to the same process. t and t0 are race-dependent if they have a race condition due
to access to shared variables or message channels. t and t0 are dependent if they
are process-dependent or race-dependent, and they are independent otherwise.
A transition is visible wrt a temporal logic formula if its execution changes the
values of some variables in the formula. A transition is invisible if it is not visible.

Figure 1 shows algorithm Generate RG, which generates the reachability
graph (RG) for a concurrent system in depth-�rst fashion and performs on-



Generate RG(M: A Concurrent System)

RG: Reachability graph, RG = (V;E), V : nodes, E: edges

open: Set of unexplored nodes of RG

V  ;, E  ;
Generate the initial global state and put it in open

while open 6= ;
G the most recently added global state in open

remove G from open

if G is a deadlock state, report deadlock

else if G is a nonprogress state, report nonprogress

else Gedges  Generate RGEdges(G)

for each e 2 Gedges

determine successor G0 of G along edge e

if G0 62 V

V  V
S
fG0g and open open

S
fG0g

E  E
S
feg

return RG

Fig. 1. Algorithm Generate RG

the-y analysis for detecting deadlock and nonprogress states. Global states
that are discovered and not yet expanded are maintained in a set called open.
The initial global state is placed in open at the beginning of the algorithm.
At each step, the last global state added to open is expanded, unless it is a
deadlock or nonprogress state; in which case, the encountered fault is reported.
Expanding a state G involves generating the edges and successors of G. Function
Generate RGEdges(G) returns a set of edges where each edge corresponds to
an enabled transition of G. The algorithm stops when all reachable states are
expanded.

To generate an SRG, we replace Generate RGEdges(G) in algorithm Gen-
erate RG with Generate SRGEdges(G), which generates a sets of edges for G,
where each edge is a set of transitions. Generate SRGEdges(G) must satisfy two
conicting goals. On the one hand, it has to generate enough edges for checking
the correctness of the speci�ed properties. On the other hand, it has to avoid
generating redundant edges. Below we propose a three-step framework for Gen-
erate SRGEdges(G). Let Genabled denote the set of enabled transitions at G.
Step 1: Generate subsets of Genabled that have no process-dependency. Thus,
each generated subset contains at most one transition from each process.
Step 2: For each set E1 generated by step 1, generate subsets of E1 that do
not have race-dependency. Thus, each generated subset does not contain two or
more enabled transitions belonging to the same process or having race condi-
tions. A solution for step 2 depends on the set of allowed operations that have
race conditions.
Step 3: For each set E2 generated by step 2, generate subsets of E2 that con-
tains at most one visible transition. The reason is to allow the generation of all
possible interleavings of visible transitions. Each subset generated in this step is
an edge of G.

At the end of step 2, each generated subset contains transitions that are
independent with each other. Note that the concept of independent transitions
is also used in partial order reduction. The basic idea of partial order reduction is



to generate only one of totally ordered transition sequences with the same partial
order (based on the dependency relation). SRA, however, generates a sequence of
sets of pairwise independent transitions for totally ordered transition sequences
with the same partial order. In section 4, we show how to follow the above
framework to develop algorithm Generate SRGEdges for the multi-port EFSM
model.

3 The Multi-Port EFSM Model

An extended �nite state machine (EFSM) is a �nite state machine in which
each transition is associated with a predicate de�ned over a set of variables.
We consider a set of EFSMs that communicate with each other by sending
and receiving messages, where each EFSM contains a set of ports for receiving
di�erent types of messages. We refer to this EFSM model as the multi-port
EFSM model. Compared to the EFSM models in [8],[2], the multi-port EFSM
model has more expressive power. The concept of multiple ports is used in ADA,
Estelle, and SDL [1],[13].

Our multi-port EFSM model assumes asynchronous message passing, which
involves nonblocking send and blocking receive. A port of an EFSM can receive
messages from one or more other EFSMs. Messages that arrive at a port are
received in FIFO order. Each port has a bounded queue. The message delivery
scheme between EFSMs is assumed to be causal-ordering, meaning that if a
message is sent before another message (from the same or di�erent EFSMs) to
the same port of an EFSM, then the former arrives at the port before the latter
[1].

Formally, a multi-port EFSM P is de�ned as a 7-tuple P =< Q; q0; V; T; I; O;

� >, where

1. Q: Set of states of P

2. q0: Initial state of P

3. V : Set of local variables of P

4. T : Set of port names of P

5. I: Set of input messages for all ports of P

6. O: Set of output messages of P

7. �: Set of transitions of P

Each transition t 2 � contains the following information:

{ head(t): the start state of t, head(t)2 Q.

{ tail(t): the end state of t, tail(t)2 Q.

{ tpred: a predicate involving variables in V , constants, and arithmetic/relational/
boolean operations.

{ tcomp: a computation block, which is a sequence of computational statements (as-

signment, loop, etc) involving the received message, variables in V , and constants.

{ ?pn.m: receive operation, where pn 2 T is a port name in P and m an input
message in I. in port(t)=fpng and in msg(t)=fmg. If t has no receive operation,
in port(t)=in msg(t)=�.



{ !pn.m: send operation, where pn 2 T is a port name of another EFSM and m

an output message in O. out port(t)=fpng and out msg(t)=fmg. If t has no send
operation, out port(t)=out msg(t)=�.

Determining whether transition t of process P is executable (or enabled)
when head(t) is the current state of P involves evaluating tpred and checking the
queue for port in port(t). If tpred is true and the queue is not empty, then t is
said to be executable or enabled, meaning that t is eligible for being selected for
execution. Otherwise, t is said to be disabled. If t is selected for execution, the
�rst message in the queue for in port(t) is removed, tcomp is executed, the send
operation associated with t is performed, and tail(t) becomes the current state of
P. Figure 2 illustrates a transition t with in port(t)=fr1g and out port(t)=fr2g.
Note that at most three of the following parts may be missing in a transition:
the predicate, receive operation, computational block and send operation. If both
the predicate and the receive operation are missing, the transition is said to be
a spontaneous transition.

head(t) tail(t)

t t comppred , ? r1.m1 / , !r2.m2

Fig. 2. General Format of a Transition

In this paper, we analyze a system of multi-port EFSMs P1; P2; : : : Pn, with
each Pi, 1 � i � n denoted by < Qi; qi;0; Vi; Ti; Ii; Oi; �i >. Each EFSM Pi is
also referred to as a process. qi;0 denotes the initial state of Pi and qi;j the jth
state of Pi. Ti;j refers to the jth port of Pi. For a transition t, proc(t) is the
process that contains transition t.

A transition sequence of a system of multi-port EFSMs is composed of zero
or more transitions of these EFSMs. Length of a transition sequence !, denoted
by j!j, is the number of transitions in !. For example, ! = t1t2 : : : tn has j!j = n.
For any two transition sequences � and !, �! denotes the concatenation of the
two sequences. For a transition sequence ! = t1t2 : : : tk and for any i, 0 � i � k,
t1 : : : ti is called a pre�x of !. A permutation of a set of transitions is a sequence
of these transitions in arbitrary order. For a set T of transitions, perm(T )=f all
permutations of transitions in T g. jT j denotes the cardinality of T . If jT j = n,
then jperm(T )j=n!. For T1:T2 : : : Tn, where Ti, 1 � i � n, is a set of transitions,
perm(T1:T2 : : : Tn) is de�ned as perm(T1).perm(T1)....perm(Tn).

De�nition 1. A global state G of a system M of multi-port EFSMs contains the

local state, the values of local variables and the contents of port queues for each

process in M . The initial global state of M , denoted as G0, contains the initial

local states, initial local variable values and empty port queues for all processes

in M .



De�nition 2. Let G be a global state in the reachability graph of a system M

of multi-port EFSMs. G0 is an immediate sequential successor of G, denoted by

G
t
!M G0, if t is an enabled transition of G and G0 is the state reached by t

from G. G
t
!M G0 is denoted by G

t
! G0, if M is implied.

De�nition 3. A sequential successor G0 of G, reached by a transition sequence

!, is denoted by G
!
! �G0.

De�nition 4. The reachability graph (RG) of a system of multi-port EFSMs is

the set of all global states sequentially reachable from the initial global state of

the system.

De�nition 5. A global state G in the RG of a system of multi-port EFSMs is

said to be a nonprogress state if G has no executable transitions. G is said to be

a deadlock state if it is a nonprogress state and all port queues for all processes

are empty.

An example system of processes P1,P2,P3, and P4 is shown in Figure 3.
The transitions are labeled with numbers for ease of reference. Final states are
designated with double circles. For simplicity, each process Pi,1 � i � 4, has no
local variables and its transitions contain only send and receive operations. The
RG of the example system and the details of all global states are also in the
�gure.

4 Dependency Relation for the Multi-Port EFSM Model

Dependency between transitions is a fundamental concept in partial-order re-
duction. According to [5], a valid dependency relation involves two transitions,
while a valid conditional dependency relation involves a global state and two
transitions. For the multi-port EFSM model, below we de�ne a valid conditional
dependency relation.

De�nition 6. Let G be a global state of a system M of EFSMs. Two transitions

t1 and t2 of M are said to be independent wrt G if:

1. t1 and t2 are enabled transitions of G

2. proc(t1)6=proc(t2) and

3. either out port(t1) 6= out port(t2) or out port(t1) = out port(t2)= �

t1 and t2 are said to be dependent wrt G otherwise. If t1 and t2 do not satisfy
condition (2), they are said to be process-dependent. If t1 and t2 do not satisfy
condition (3), they are said to be race-dependent.

Let S be a set of enabled transitions at a global state G of a system of EF-
SMs. If no two transitions of S are process-dependent (race-dependent), then S

is said to be process-independent (race-independent) at G. S is said to be an in-
dependent transition set at G, if it is process-independent and race-independent
at G. S is said to be a maximal independent transition set at G, if G has no
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G0: q1;0 q2;0 � q3;0 � q4;0 �

G1: q1;1 q2;0 � q3;0 a q4;0 �

G2: q1;0 q2;1 � q3;0 � q4;0 c

G3: q1;2 q2;0 b q3;0 a q4;0 �

G4: q1;1 q2;1 � q3;0 a q4;0 c

G5: q1;1 q2;0 � q3;1 � q4;0 �

G6: q1;0 q2;1 � q3;0 � q4;1 �

G7: q1;2 q2;1 b q3;0 a q4;0 c

G8: q1;2 q2;0 b q3;1 � q4;0 �

G9: q1;1 q2;1 � q3;1 � q4;0 c

G10: q1;1 q2;1 � q3;0 a q4;1 �

G11: q1;2 q2;2 � q3;0 a q4;0 c

G12: q1;2 q2;1 b q3;1 � q4;0 c

G13: q1;2 q2;1 b q3;0 a q4;1 �

G14: q1;1 q2;1 � q3;1 � q4;1 �

G15: q1;2 q2;2 � q3;1 � q4;0 c

G16: q1;2 q2;2 � q3;0 a q4;1 �

G17: q1;2 q2;1 b q3;1 � q4;1 �

G18: q1;2 q2;2 � q3;1 � q4;1 �

Fig. 3. Example 1

enabled transition t, t =2 S such that S [ ftg is an independent transition set at
G. In the remainder of this paper, when we mention independent transitions wrt
a global state, we often omit \wrt a global state" if this global state is implied.

Assume that transitions t1 and t2 are independent wrt global state G. If

G
t1t2! �G0, then G

t2t1! �G0. Thus, the state reached from G after execution of
t1 and t2 is independent of the execution order of t1 and t2. This property can
be generalized to three or more independent transitions wrt a global state, as
shown below.

Lemma 1. Let G be a global state of a system M of EFSMs. Let T be an

independent set at G. Let � and ! be two permutations of T . If G
�
! �G0, then

G
!
! �G0.

De�nition 7. Let G be a global state of a system M of EFSMs. Let t be a

transition of M and let ! = t1t2 : : : tk be a transition sequence of M , where



G1
t1! G2 : : : Gk

tk! G0 and G = G1. t and ! are said to be independent wrt G if

t and ti, 1 � i � k are independent wrt Gi.

Lemma 2. Let G be a global state of a system M of EFSMs. Let t be a tran-

sition of M and ! be a transition sequence of M . If G
!t
! �G0 and t and ! are

independent wrt G, then G
t!
! �G0.

Lemma 3. Let G be a global state of a system M of EFSMs. Let � and ! be

transition sequences of M . If G
!�
! �G0 and 8t in �, t and ! are independent wrt

G, then G
�!
! �G0.

The race set of a transition t is de�ned as the set of transitions that send a
message to the same port as t. Formally, race(t) = ft0j out port(t0) = out port(t),
out port(t0) 6= �, t 6= t0, and proc(t) 6= proc(t0) g. A transition is referred to as a
racing transition if its race set is not empty. A port is said to be a race port
if two or more EFSMs have transitions with this port as out port. Thus, for a
racing transition t, out port(t) is a race port. Let t be a racing transition at a
global state G. Since the de�nition of race(t) is coarse, t does not necessarily
have a race with each transition in race(t) at G or at any other state reachable
from G. In order to make the set of possible racing transitions more precise, it
is necessary to apply some program analysis techniques.

5 Algorithm Generate SRGEdges

As mentioned in section 2, to generate an SRG for model checking, we replace
Generate RGEdges in algorithm Generate RG, shown in Figure 1, with Gener-
ate SRGEdges. Following the three-step framework described in section 2, we
now present algorithm Generate SRGEdges(G), where G is a global state, for
the multi-port EFSM model.

De�nition 8. An immediate simultaneous successor G0 of G reached by an in-

dependent transition set T at G, is denoted by G
T
; G0, where G

!
! �G0 and ! 2

perm(T ).

De�nition 9. A simultaneous successor G0 of G reached by a sequence of tran-

sition sets T1T2 : : : Tl is denoted by G
T1T2:::Tl
; �G0.

In order to illustrate the concept of an SRG, consider example 1, which is
shown in Figure 3. Assume that all transitions in this example are invisible. The
SRG for example 1 is shown in Figure 4. Note that for each global state in the
SRG, its enabled transitions have no process or race-dependency. Thus, each
global state has exactly one edge, which contains all enabled transitions of this
global state.

An edge of an SRG state G corresponds to a set of transitions independent
wrt G. Gedges denotes the set of edges of G. Gtrans denotes the set of transi-
tions of processes at G. Enabled and disabled transitions of G are referred to as
Genabled and Gdisabled, respectively.
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Fig. 4. SRG for Example 1

5.1 Step 1 of Generate SRGEdges(G)

This step is to generate subsets of Genabled that have no process-dependency.
As mentioned earlier, Ozdemir and Ural [10] developed an SRG generation algo-
rithm for the CFSM model, which has no race conditions. The purpose of that
algorithm is to detect deadlock and nonprogress. We use an iterative and more
e�cient form of their recursive algorithm for step 1. Below we explain our form
of the algorithm. (In [15] Schoot and Ural improved that algorithm for the same
purpose, but the improved algorithm cannot be used here for model checking.)

An intuitive solution for step 1 is to group transitions in Genabled into sets
such that each set is composed of enabled transitions belonging to the same
process and then take the Cartesian product of these sets. Figure 5 illustrates
this computation for the three processes of example 2, which shows enabled
transitions of each process. However, this intuitive solution is not su�cient.

t1 t2 t3 t4 t5

t2t1 t3 t5t4

{ , }, ,}{ , ,t1 t3 t }{ , ,t t3 t4 }{ , ,t t3 t}{ , ,t1 t3 t4 5 2 2 5

P P2 P31

X X

Fig. 5. Example 2

A disabled transition t of process Pi at a global state G is said to be a
potentially executable transition if Pi has at least one enabled transition at
G and tpred=true. According to the intuitive solution described above, every
transition set produced by step 1 contains one enabled transition of Pi. This
creates a problem since transition t needs to be executed for fault detection. To
solve this problem, we need to delay execution of Pi until t becomes enabled.
This can be accomplished as follows. For every transition set S produced by step
1, if S contains an enabled transition t0 of Pi, then S n ft0g is also produced by
step 1.

The term \potentially executable transitions" was de�ned in [10]. In [6] the
presence of potentially executable transitions is referred to as confusion. Example
3 in Figure 6 illustrates potentially executable transitions. At G0, transitions t1



and t4 are enabled and t3 is a potentially executable transition of P1. So G0 has
2 global edges ft1; t4g and ft4g. The latter edge ensures that there is a path
from G0 in which P1 does not make any progress. Note that G5 is a nonprogress
state. If G0 did not have edge ft4g, state G5 would not be generated.

In order to handle potentially executable transitions, the intuitive solution
described above is modi�ed as follows. After grouping the enabled transitions
of G into sets of pairwise process-dependent transitions, we add a special tran-
sition, tnull, to each set formed by enabled transitions of a process with a po-
tentially executable transition. After this modi�cation, the Cartesian product of
these sets may produce transition sets containing tnull. If a transition set in the
Cartesian product contains only tnull, then we ignore this transition set. This
situation occurs only if each process at G having enabled transitions also has
potentially executable transitions. If a transition set in the Cartesian product
contains tnull as well as other transitions, then we delete tnull from this set.
This situation occurs when there exists at least one process at G that has both
enabled and potentially executable transitions. According to this modi�ed so-
lution, if a generated transition set S has t from a process with a potentially
executable transition, then S n ftg is also generated by step 1. Note that the
use of tnull is to simplify the construction of extra edges due to potentially exe-
cutable transitions. A formal description of the above solution is given in step 1
of algorithm Generate SRAEdges, which is shown in Figure 9.
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Fig. 6. Example 3

In example 3, shown in Figure 6, G0 has ft1g and ft4g as process-independent
sets. ft1g becomes ft1; tnullg due to the existence of a potentially executable
transition t3. Computation of ft1; tnullg � ft4g yields fft1; t4g; ftnull; t4gg. After
the removal of tnull, step 1 produces fft1; t4g; ft4gg.

5.2 Step 2 of Generate SRGEdges(G)

For each set generated by step 1, this step generates its subsets that do not have
race-dependency. According to the de�nition of dependency for the multi-port
EFSM model in section 3, two enabled transitions of G have race-dependency if



they have the same out port that is not �. In [9] we developed an SRG genera-
tion algorithm for detecting deadlock and nonprogress in a system of multi-port
EFSMs. That algorithm can be used here for model checking. Below we describe
an improved version of that algorithm.

Let S be a set generated by step 1. An intuitive solution for step 2 is to group
transitions in S into sets such that each set is composed of enabled transitions
with the same out port and then take the Cartesian product of these sets. Figure
7 illustrates this intuitive solution for the sets produced in Figure 5 for example
2. We assume that transitions in example 2 have di�erent out port except t1 and
t3. However, this intuitive solution is not su�cient.
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Fig. 7. Step 2 for Example 2

An enabled transition t of process Pi at a global state G may have a race with
a transition t0 of process Pj , j 6= i, at a global state G0 such that G0 is reachable
from G. According to the intuitive solution described above, t0 is not taken into
consideration in the construction of Gedges. As a result, the generated transition
sequences from G do not explore the situation where t0 occurs before t. Thus, the
intuitive solution fails to detect faults that happen in transition sequences from
G in which t0 occurs before t. t0 is referred to as a racing transition of successor
states of G.

Consider example 4 shown in Figure 8. Transitions t1 and t4 have a race since
they send messages to port T3;1. We need to generate paths in which t1 occurs
before t4 and vice versa. However, t1 is executable at G0 while t4 is not even
a transition of some process at G0. In order to construct the path on which t4
happens before t1, we need an edge in which t1 is not executed. In example 4,
the enabled transitions of G0 are t1 and t3. Since t1 is a racing transition, we
select sets ft1; t3g and ft3g. G2 has enabled transitions t1 and t4, which have
race-dependency. Hence, these transitions are selected on separate edges.

In order to handle racing transitions of successor states, we need to con-
sider the complete system. For a port r, let out proc(r) be fijPi has at least
one transition with r as out portg. For a set A of transitions, let proc(A) = f
proc(t)jt 2 Ag. Let reachable(i; G; k) be true if the local state of process Pi at
global state G can reach a transition with port Tk as its out port.

Let S be a set produced by step 1. We group transitions in S according to
their out port. For a port r, let Sr be the set of transitions in S with r as out port.
Let k be an element in out port(r)nproc(Sr). Process Pk contains at least one
transition with r as out port. However, we need to worry about race conditions
between transitions in Sr and a future transition of Pk only if the state of Pk in
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Fig. 8. Example 4

G can reach a transition with r as its out port. Thus, only under this condition,
we add tnull to the set of transitions for port r to delay the execution of these
transitions. Then we compute the Cartesian product of these sets. If a transition
set in the Cartesian product contains only tnull, we ignore this transition set.
This situation occurs only if tnull is added for each out port involved in S. If a
transition set in the Cartesian product contains tnull and other transitions, we
delete tnull from this set. This situation occurs only if tnull is added for at least
one out port involved in S. A formal description of the above solution is given
in step 2 of algorithm Generate SRGEdges.

In example 4, shown in Figure 8, G0 has ft1; t3g as the maximal process-
independent set. Grouping of the transitions in this set according to ports yields
ft1g for port T3;1 and ft3g for port T1;1. Since t3 is a racing transition, the set for
port T3;1 is modi�ed to ft1; tnullg. ft3g � ft1; tnullg yields fft1; t3g; ftnull; t3gg.
After the removal of tnull, G0 has edges ft1; t3g and ft3g as shown in Figure 8.

5.3 Step 3 of Generate SRGEdges(G)

A set of transitions S produced at the end of step 2 for a global state G may
contain both visible and invisible transitions. If S has more than one visible
transition, then the simultaneous execution of the transitions in S will skip in-
termediate global states in which values of some variables involved in the speci-
�ed properties are changed. As a result the generated SRG will not have all the
states necessary for model checking. In order to avoid this problem, each SRG

edge can have at most one visible transition. In step 3, we �rst separate the
visible and invisible transitions of S. Let Svis be the set of visible transitions in
S. Then, the set of invisible transitions, Sinvis, is the set SnSvis. Each transition
t 2 Svis can be simultaneously executed with the set Sinvis to ensure the gener-
ation of all global states necessary for model checking. Hence for each t 2 Svis
we generate ftg [ Sinvis as an edge. Note that we need to delay the execution
of transitions in Svis in order to allow other visible transitions to occur �rst. In
order to do so, we add Sinvis as an SRG edge of G.



Generate SRGEdges(G:GlobalState)

i: Index to processes in the system,1 � i � n, where n is the number of processes
j: Index to ports in the system,1 � j � jT j, where jT j is the number of ports

Gedges  ;, Sets1 ;, Sets2 ;, PD  ;, RD  ;

// Step 1: Generate transition sets that are process-independent

For 1 � i � n

Ai  f enabled transitions of Pi at G g // Process-dependency

if Ai 6= ;

if Pi has a transition t such that t 2 Gdisabled and tpred=true
PD  PD [fAi [ ftnullgg // Potentially Executable Transition

else

PD  PD [fAig
CP1  PD1 � PD2 � PD3 � : : :� PDjPDj

for each D 2 CP1

if D n ftnullg 6= ; then Sets1 Sets1 [fD n ftnullgg

// Step 2: For each set in Sets1, generate subsets that are race-independent

for each E 2 Sets1

X  f transitions in E with empty out portg
For 1 � j � jT j

Bj  f transitions in E whose out port is Tj g // Race-dependency

if Bj 6= ;
if 9 k 2 out proc(Tj)n proc(Bj) st reachable(k; G; j)

RD  RD [fBj [ ftnullgg // Racing transition of successors

else
RD  RD [fBjg

if RD = ;, Sets2 fXg

else CP2  RD1 �RD2 �RD3 � : : :�RDjRDj

for each F 2 CP2

if F n ftnullg 6= ;, then Sets2  Sets2 [fF [X n ftnullgg

// Step 3: For each set in Sets2, generate subsets with at most 1 visible transition

for each H 2 Sets2

Hvis  f visible transitions in H g
Hinvis  H nHvis

if Hinvis 6= ;, Gedges  Gedges [fHinvisg

if Hvis 6= ;
for each t 2 Hvis

Gedges  Gedges

S
fHinvis [ ftgg

return Gedges

Fig. 9. Algorithm Generate SRGEdges



The complete algorithm Generate SRGEdges is shown in Figure 9. We use
set notation throughout the algorithm. Capital letters denote sets and bold face
capital letters denote sets of sets. Symbols n, [, and \ denote set minus, union
and intersection, respectively. We refer to elements in a set A as Ai, 1 � i � jAj.

5.4 Correctness of Algorithm Generate SRG

Algorithm Generate SRG is algorithm Generate RG modi�ed by replacing Gen-
erate RGEdges(G) with Generate SRGEdges(G). For a systemM of EFSMs, let
RG(M) and SRG(M) be the state graphs produced by Generate RG and Gen-
erate SRG, respectively. To prove that SRG(M) provides su�cient information
for model checking, we show that RG(M) and SRG(M) are stuttering equiva-
lent. (See [3] for the de�nition of stuttering equivalence.) More speci�cally, we
need to show the following:
(a) For each path � of RG(M) from the initial state, there exists a path � of
SRG(M) from the initial state such that � is stuttering equivalent to any se-
quence in perm(�).
(b) For each path � of SRG(M) from the initial state, there exists a path � of
RG(M) from the initial state such that any sequence in perm(�) is stuttering
equivalent to �.

The proofs for (a) and (b) are similar to those in section 10.6 of [3], which
show the correctness of a partial order reduction algorithm for model checking.
The major di�erence is that an edge of SRG(M) is a set of transitions instead of
a single transition. To provide complete proofs for (a) and (b) is a tedious task.
Below we show how to prove the portion of (a) that corresponds to the portion
immediately before lemma 26 in section 10.6 of [3]. Other proofs for (a) and (b)
can be easily derived from the material in section 10.6 of [3].

Let � be a path of RG(M) from the initial state. We want to show that
there exists a path � of SRG(M) from the initial state such that � is stuttering
equivalent to any sequence in perm(�). Let �i be the pre�x of � that has length i.
The construction of �i is as follows. We construct an in�nite sequence of strings
�0; �1; : : :, where �0 = �. Let �i be u:�i, where u 2 perm(�i), �i contains i edges
of SRG(M) and �i contains transitions of RG(M). For �0, �0 is empty and �0
is �. Assume that we have constructed strings �0; �1; : : : ; �i, we describe how to
construct �i+1 = v:�i+1 where v 2 perm(�i+1). Let s0 be the state in SRG(M)
that is reached by �i and � be the �rst transition of �i.

Let proc1 = f jjPj at s0 has at least one enabled transition g. Construct
the set T1 as follows. Initially, T1 is empty. For each j in proc1, �nd the �rst
occurrence of a transition of Pj in �i such that this transition is independent of
all preceding transitions wrt s0. If such a transition can be found, add it to T1.
jT1j > 0 since T1 de�nitely contains �.

Case A. jT1j = jproc1j. According to algorithm Generate SRGEdges, T1 is an
element in Sets1. Since all transitions in T1 have distinct out port, T1 is an
element in Sets2.
A.1. � is a visible transition. According to step 3 for T1, s0 has one edge, say



E3, that contains �.
A.1.1. E3 n f�g is empty. Let �i+1 be �i appended by f�g and let �i+1 be �i
without the �rst transition.
A.1.2. E3 n f�g is not empty. Each transition in E3 n f�g is invisible. RG(M)
contains a path u:v from state s0, where u is a sequence in perm(E3) and v is
�i modi�ed by deleting transitions in E3. Let �i+1 be �i:E3 and let �i+1 be v.
A.2 � is an invisible transition. According to step 3 for T1, s0 contains one edge,
say E3, that contains � and possibly other invisible transitions, but no visible
transitions. Like case A.1.2, let �i+1 be �i:E3 and let �i+1 be �i modi�ed by
deleting transitions in E3.

Case B. jT1j < jproc1j. Construct the set T2 as follows. Initially, T2 is empty.
For each j in proc1 n proc(T1), �nd the �rst occurrence of a transition of Pj in
�i such that this transition is an enabled transition of Pj at state s0. If such a
transition can be found, add it to T2. Note that each transition in T2 is a racing
transition. Let proc3 be f kjk 2 proc1 and Pk has no transitions in �ig. Note
that proc(T1), proc(T2) and proc3 are mutually disjoint. For each q that is in
proc1, but not in proc(T1), proc(T2), or proc3, the �rst transition of Pq in �i
exists and is a potentially executable transition at s0. According to step 1, the
element in PD for Pq contains tnull. Thus, Sets1 contains an element, say E1,
that is (T1[T2[T3), where T3 contains one enabled transition of each process
in proc3 at s0.
B.1. proc3 is empty. Thus, E1 = (T1 [ T2). According to step 2 for E1, Sets2
contains one element that is exactly T1. The proof for this case is similar to that
for case A.
B.2. proc3 is not empty. Thus, E1 = (T1 [ T2 [ T3), where T3 is not empty.
According to step 2 for E1, the set RD is constructed, where each element of
RD contains all transitions in E1 with a speci�c port as out port and possibly
contains tnull. Note that if an element of RD does not contain a transition in
T1 or tnull, then it contains only transitions in T3. Construct the set T30 as
follows. Initially, T30 is empty. For each element in RD, if this element contains
only transitions in T3, add one of these transitions to T30. Sets2 contains one
element, say E2, such that E2 = (T1 [ T30). Below we show by contradiction
that all transitions in T30 are independent of each transition in �i wrt s0. As-
sume there is a transition t in T30 such that t is dependent with a transition
in �i. By construction, all transitions in T30 are in proc3. Hence t cannot have
process-dependency with a transition on �i. Then t has a race-dependency with
a transition in �i. Assume that a transition t0 in �i has the same out port as t.
Since proc(t0) is not in proc3, the element in RD that contains t should contain
tnull. But this is a contradiction to the fact that this element in RD does not
contain tnull. So t is race-independent with any transition in �i. Also, proc(t)
has no transitions in �i. Therefore, any transition in T30 does not appear in �i
and is independent of each transition in �i wrt s0.
B.2.1. T30 is empty. Thus, E2 = T1. This case is similar to case B.1.
B.2.2. T30 is not empty.



B.2.2.1. � is a visible transition. According to step 3 for E2, s0 has one edge,
say E3, that contains �.
B.2.2.1.1. E3 n f�g is empty. This case is similar to case A.1.1.
B.2.2.1.2. E3nf�g is not empty. Each transition in E3nf�g is invisible. RG(M)
contains a path u:v from state s0, where u is a sequence in perm(E3) and v is
�i modi�ed by deleting transitions in E3\T1. (Note that transitions in E3 nT1
do not appear in �i.) Let �i+1 be �i:E3 and let �i+1 be v.
B.2.2.2 � is an invisible transition. According to step 3 for E2, s0 contains one
edge, say E3, that contains � and possibly other invisible transitions, but no
visible transitions. The proof for this case is similar to that for case B.2.2.1.2.

6 Empirical Results

The main goal of our empirical study is to asses the performance of SRA based
model checking. We measure the performance in terms of the reduction in the size
of the reachability graph constructed by SRA with respect to the full reachability
graph. Our system for constructing reachability graphs of EFSMs is implemented
in java (JDK12).

Partial order reduction techniques have been shown to provide substantial re-
duction in the size of the reachability graph for linear-time temporal logic (LTL)
model-checking [3]. SPIN [7], which is a widely used model-checker, implements
the partial order reduction technique proposed by Peled [4]. In this paper, we
compare the performance of our algorithm for SRA based model checking with
that of SPIN for the same set of concurrent problems.

SPIN considers each statement in Promela as a transition, while our EFSM
model allows a transition to include multiple statements. In order to ensure a fair
comparison between SRA and the partial order reduction method implemented
in SPIN, we used the same speci�cation style in both EFSM code and Promela
code. In accomplishing this we focused on three main issues described below.

First, we adopted the state transition table produced by SPIN for each
Promela process to be our EFSM code. As a result, each transition in EFSM
code corresponds to a transition in the FSM produced by SPIN and hence a
statement in Promela code. 1

Second, our EFSM code uses ports for message passing, while Promela uses
channels. A port is equivalent to a channel with only one receiver. In our em-
pirical studies, we use Promela programs that contain channels with only one
receiver. Thus, the di�erence between ports and channels has no impact on the
results of our empirical studies.

Third, Promela allows global variables, while our EFSM model does not.
(We are modifying our EFSM model and its implementation to allow global
variables.) In a Promela program, a never claim is used to specify a property
to be veri�ed. Global variables used in a never claim cause an increase in the
size of the reachability graph produced by partial order reduction, since such

1 Since SPIN uses statement merging, a transition in the SPIN FSMmay correspond to
multiple statements. In such cases, EFSM transition matches the merged statement.



variables make some transitions visible. In order to produce the same e�ect on the
reachability graph produced by SRA for an EFSM program, we manually mark
transitions that contain variables used in a never claim as visible transitions.

We report two sets of results for each problem. In the �rst set we show the
reachability graphs without never claims. For each problem considered, we �rst
show the sizes of the RG and the SRG built from the EFSM program and the
reduction in the reachability graph achieved by SRA. Second, we report the
size of the full reachability graph built by SPIN without using the partial order
reduction. Then we report the reduced reachability graph according to partial
order reduction of SPIN and the reduction in reachability graph size due to
partial order reduction. In the second set, we repeat the above information with
the use of never claims.

We considered two concurrent problems, leader election (LD) and readers &
writers problem (RW). The algorithm for leader election in a unidirectional ring
is adopted from the solution of Dolev, Klawe, and Rodeh found in [12]. In this
version, all processes participate in the election. The main idea of the algorithm
is as follows: Each node Pi waits until it has received the numbers of its two
neighbors to the left , Pk and Pl, where Pk is the nearest. If Pk has the largest
number, Pi transmits Pk's number and becomes passive. After a node becomes
passive, it merely relays messages. Remaining active nodes repeat the above step
until a winner is established.

Table 1. Results for Leader Election Problem

Without Never Claim

EFSM % V Red. SPIN %V Red.

LD RG SRG RG POR

V E V E V E V E

[3] 379 834 37 36 90.24% 369 808 59 59 84.01%

[4] 2228 6594 45 44 97.98% 2180 6465 77 77 96.47%

[5] 14194 52707 53 52 99.63% 14048 52288 95 95 99.32%

[6] 93194 415807 61 60 99.93% 92895 414808 113 113 99.88%

With Never Claim

EFSM % V Red. SPIN %V Red.

LD RG SRG RG POR

V E V E V E V E

[3] 381 837 38 37 90.03% 371 812 67 69 81.94%

[4] 2232 6602 46 45 97.94% 2181 6467 78 79 96.42%

[5] 14202 52727 54 53 99.62% 14049 52290 96 97 99.32%

[6] 93210 415855 62 61 99.93% 92897 414812 121 123 99.87%

We considered one never claim for this problem, that is the number of leaders
is never more than one. In order to evaluate this never claim, we introduced



the global variable numLeaders to both EFSM program and Promela program.
The transition updating this variable is added to both programs. In the EFSM
program, this transition is marked as visible. Table 1 shows the empirical results
for the leader election problem. The �rst column indicates the problem size in
terms of the number of nodes participating in the election.

Table 2. Results for Readers and Writers Problem

Without Never Claim

EFSM %V Red SPIN %V Red

RW RG SRG RG POR

V E V E V E V E

1,1 111 181 82 132 26.13% 149 240 121 170 18.79%

2,1 712 1330 490 992 31.18% 1023 1901 675 990 34.02%

1,2 1522 2849 1064 2166 30.09% 1733 3218 1201 1800 30.70%

2,2 16867 33130 10581 23796 37.27% 21192 41522 12250 18591 42.20%

With Never Claim

EFSM %V Red SPIN %V Red

RW RG SRG RG POR

V E V E V E V E

1,1 178 317 153 297 14.04% 252 452 229 347 9.13%

2,1 1178 2345 1066 2571 9.51% 1759 3534 1603 2563 8.87%

1,2 2410 4811 2185 5328 9.34% 2969 5975 2718 4422 8.45%

2,2 27223 56366 25293 66132 7.09% 36686 76754 33868 55015 7.68%

The second problem we considered is the readers and writers problem. In
this problem readers and writers access a shared bu�er through a server. The
readers and writers have equal access priorities.

For this problem we considered the never claim stating that the total number
of readers and writers active in the database is never more than one. This claim
involves two global variables numReaders, numWriters, which keep track of the
active reader and writer instances, respectively. The transitions of the server
(total of 4 transitions) that updates these variables are included in both EFSM
and Promela programs. In the EFSM program these transitions are marked as
visible. Table 2 shows the empirical results for the readers and writers problem.
The �rst column indicates the problem size in terms of readers and writers.

Based on the above results for two concurrent problems, we have the following
observations. First, the sizes of the full RGs produced by our algorithm and
SPIN are not the same. The reason is probably due to some minor di�erences
in the construction of RG. Second, for the leader election problem, both SRA
reduction and partial order reduction signi�cantly reduced the sizes of the full
RGs, with SRA reduction producing smaller reduced graphs. Third, for the
readers and writers problem, SRA reduction produces about the same number



of states as partial order reduction. But the former produces more transitions
than the latter.

7 Conclusions

In this paper, we have proposed an SRA-based framework for producing a re-
duced state graph, called an SRG, for a concurrent system in order to allow
model checking. We have applied this framework to develop algorithm Gener-
ate SRG, which produces an SRG for a system of EFSMs with multiple ports.
Based on our preliminary empirical studies, algorithm Generate SRG performs
as good as or better than the partial order reduction algorithm in SPIN.

The three-step SRA-based framework proposed in this paper can be applied
to any concurrent system for model checking. Step 2 in the framework deals with
race dependency and thus requires di�erent de�nitions of dependency relations
for di�erent models of concurrency. Di�erent solutions can be developed for
each step in the framework. How to design solutions to minimize the size of the
generated SRG for model checking needs further research.

As mentioned in the introduction section, both SRA and partial-order reduc-
tion can be used to alleviate the state explosion problem. One major advantage of
the SRA approach over the partial-order reduction approach is that the former
can be used with compositional techniques while the latter cannot. Composi-
tional techniques build reachability graphs in modular fashion, reducing graphs
before using them for composing larger ones. Since it is not known a priori which
interleavings of transitions maybe needed in later composition steps, informa-
tion on all interleavings should be retained. Given n independent transitions at
a global state, partial order reduction techniques select only one of the n! inter-
leavings. While this approach is su�cient for analyzing a concurrent program,
loss of information on other possible interleavings prohibits using the generated
reachability graph for compositional purpose. The SRA approach, on the other
hand, maintains information on all interleavings by keeping independent transi-
tions of a global state in one edge. This property permits combining SRA with
compositional methods. We are currently investigating how to combine SRA
with compositional methods.
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