The Temporal Logic of Programs

Amir PNUELI

May 1981

[

THE TEMPORAL LOGIC OF PROGRAMS#*
Amir Prnueldl

University of Pennsylvania, Pa.

and

Tel-Aviv University, Tel Aviwv,

Summary:

A unified approach to program verification is
suggested, which applies to both sequential and
parallel programs. The main proof method suggested is
that of temporal reasoning in which the time depend-
ence of events 1s the basic concept. Two formal
systems are presented for providing a basis for tem-—
poral reasoning. O(me forms a formalization of the
method of intermittent assertions, while the other is
an adaptation of the tense logic system K, and is

particularly suitable for reasoning about comcurrent
programs.

0., Introductieon

Due to increasing maturity in the research on
program verification, and the increasing interest and
understanding of the behavier of concurrent programs,
it is possible teo distinguish two important trends in
the research concerning both these fields. The first
1s towards unification of the basic notions and
approaches to program verification, be they sequential
or concurrent programs. The second is the eomtinuous
search for proof methods which will approximate more
and more the inctultive reasoning that a programmer
employs in designing and implementing his programs.

As a result of the first trend, one can indeed
claim today that there exist very few simple proof
principles which apply equally well to both sequential
and concurrent prograns. Thus, the prevalent notions
of what constitutes a correctness of a program can all
be reduced to two main concepts:

a. The concept of invariance, i.e2. a property
holding continuously throughout the executiom of a
program. By appropriately extending the concept of an
assertion to describe a relation between the values of
the variables and the lecation at which the program is
executing, it can be shown that the general notion of
invariance covers the concepte of partial correctness
and clean behavior for sequential programs, and in
additien these of mutual exclusion, safety and dead-
lock freedam in concurrent programs.

b. The second and even more important comcept is
that of eventuality (or tempeoral implicatiom). In its
full generality this denotes a dependence in time in
the behavior of the program. We write #&Y¥, read as:
"Yeventually follows W " or " ¥ temporally implies
W', {f whenever the situaticn described by &
arises In the program, it is guaranteed that eventu-
ally the situation described by W will be attained.

The notioen of eventuality covers as a special
case the property of total correctness. In addition
it preovides the right generalization of cerrect
behavior in time for cyclle or non-functimal programs.

The classical approach te correctness of programs,
such as represented in Manna 17, Hoare®:8 and also
Owicki?li 22 uho addressed herself to concurrent pro—

*This research was supported in part by ONR under
contract NOOO14-76-C-0416 and by NSF grant MCS
To= 19466,

46

19104

Israel

grams, always considered functiomal programs only.
Those are programs with distinct beginning and end, and
same canputational instructions in between, whose
statement of correctness consists of the description
of the function of the input wvariables computed om
successful completion. This approach completely
ignored an important class of cperatimg system or
real time type programs, for which haltln§ is rather
an abnormal situatien. Only recently 10, 11,19 phaye
people begun investigating the concept of correctness
for non-terminating cyclic programs. It seems that
the notion of temporal implication is the correct ome.
Thus, a specification of correctness for an operating
system may be that it responds correctly to any
incoming request, expressible as: { Request arrival
sitvation }4{ System grants request }.

Similar to the unification of correctness basic
concepts, there seemsto be a unification in the basic
proof methods. Thus fer proving imvariance the widely
acclaimed method is the inductive assertiocn method.
For proving eventuality one uses either the well
founded set method or a relatively recent method which
we prefer to call temporal reasoning. This methed,
introduced by Burstall” and further develeped Ln [19)
and [24] (called there the method of intermittent
assertions), represents the second menticoned trend in
trying to approach the intuitive natural line of
reasoning one may adopt when informally justifying his
program.

This paper attempts to contribute to these two
trends. Two formal systems are presented which give a
sound basis to the yet unformalized methodology of
temporal reasoning about programs. This will on one
hand enhance the particular method it formalizes, and
on the other hand stress and give more insight to the
important concept of eventuality.

The first of the two systems is a direct formal
paraphraze of the ideas and arguments repeatedly used
in [5] and [19]. Since this system seems adequate for
sequential programs but too weak to accomodate the
multi branching alternate reasoming needed for con-
current programs, a second system was adopted, which is
richer in structure and is actually but a modification
of the tense logle system Ky studied by Rescher and

Urquhart in (23], 1hie system seems much more satis-
fying and able to model the more intricate reasoning
involved in proving temporal correctness of concurrent
programs.

The significance of temporal reasoning to con-
current programs was pointed out in (10,11], However
the tool suggested there, introduction of real time
clock seems too gross and powerful for the purpose
needed. We correct this situation here by formulating
the system K+h whieh is tallored to have exactly the

adequate power and mechanism for proving temporal
dependencies of concurrent programs.

Another formalization of the intermittent
assertion methed usin? a ridcher tense logic has just
recently appeared in [3],014],

1. Systems and Programs

A unifiped approach to both sequential and comcur-

rent programs is provided bv the general framework of
a system (see also Kellerm).

A dynamic discrete system consists of
<S8, R, 857
where:

5§ - is the set of states the system may assume (possi-
bly infinite)

R - is the transition relation holding between a state
and its possible successors, RE S x §

s, - 1s the initial state .

An execution of the system is a sequence:
G = Sg Slsess
where for each 1 » o,R(sy, 8441) holds.

Since R is nondeterministic in general, many
different execution sequences are possible.

Obvicusly the concept of a discrete system is
very general. It applies to programs manipulating
digital data (conventional programs),to Programs
manipulating physical objects (Robot driving programs),
to general engineering and even bilolegical systems,
restricted enly by the requirement that their eve-
lution in time be discrete. Consequently amy proof
principle that can be developed for general systems
shauld apply to the verification of behavior of any
of these systems, McCarthy and Hayes advecated in
[20) such a general approach and to a certain extent
this paper is a technical pursuance of some of the
general ideas expressed there.

However, being chiefly motivated by problems in
the programming area, all the examples and following
discussions will be addressed to verification of pro-
grams. The generality provided by the system's coa-
cept 1s only utilized for presenting a uniform
appreach to both sequential and concurrent programs
and their verificatiem.

In order to particularize systems into programs
further structuring of the state notioen 1s needed.

Sequential Programs

The specific model of deterministic sequential
programs can be obtained by structuring the general
state into

5= <1 , u>

7 is the control component and assumes a finite
number of values, taken to be labels or locatioms
in the program. L = {%g 2y,... 2,]

u 1s the data ccmponent and will usually range
over an infinite domain. In actual applicatiens it
can be further structured into individual variables
and data structures.

The transitlon relation R can also be partitioned
into a next-location function N (m,u) and a data-
transformation function T (w,u). N (f,u) will
actually depend on u only if the statement ac % is a
condicional.

We can thus express R in terms of N and T:

47

<n',u" 3) <=3 a' = MN(m,u) Gu' =

T(m,u)

R{ <m,u >,

The restricticn to deterministic programs is not
essential and is made only to simplify notation.

Concurrent Programs

By allowing more than ene control compoment we
get the case of parallel programs. The state is to be
partitioned as:

8= <my, .. W, ju>

The range of each my may be considered as the
(finite) program for the i-th processor,while u is
the shared data component . We assume that the next
state function M(m,u), and the data transfermation
T(r,u) are still deterministic and depend on a single
control component at a time . However the scheduling
choice of the mext processor to be stepped 1s
nomdeterministic .

Intuitively, the model admits n programs being
concurrently run by n processors. At each step of
the whole system, one processor, 1 is selected, and
the statement at the location pointed to by 7y is

executed to completion (we do not allow procedures).
This might seem at first glance to be restrictive,
being unable to model possible interference between
different phases of concurrent statements' executiem.
However it is up to the user to express his program
in units which for his modelling purposes can be
comsidered atamic. Thus for one user the statement

y < £(y)

mey be considered atamie, while another who may be
worried about possible interference fram other
concurrent programs between the fetch and store
phases of this instructien may write instead:

L&y
ye& £(t)

where t 1s a new variable local to the particular
process. Interference may now occcur between these
two statements. Since we will be interested in
proving termination, we will require the scheduling
to be fair i.e. no processer may be Indefinitely
delayed while enabled. This will be made more pre-
clse later.

Formally we can express the overall transitien
rule by the individual transition functions of each
of the processors as:

]

R(ﬂtl,.. LT ur;_ see W' u' >) 1iff

for some 1, 1 §1 £n:

(' nnrJ = (1q,-.my_1, Ny (ng,u), TippeeTp)
1

u' =Ty ("i’ u)

2. Specifications and Their Classification

A Time Hierarchy of Specifications

To express properties of systems and their
development in time we use relations on states q(a)
(predicates) expressed in a suitable language.
Applied to programs this will be a relation
q{ﬂl, - Mai u) between the data values and the

location of all the processor polnters. The general
verification preoblem 1s that of establishing facts

about development of the properties q(s) in time.

Introducing explicit time variables t,, tj, ..
which in our model range over the natural numbers and
may be comnected by the relations =, <, and the time
functional

H(t,q) = q(s;)

it is obviocus that any arbitrary complex time depen-

dency can be expressed. This approach was taken in n

where some intricate time specificatioms are 1llus-
trated.

Here, however, we find it both instructive and
useful to limit the expressive power of the language
with respect to dependency in time, and cbserve the
actual complexity required to express different use-
ful properties. Thus it is poessible to classify
specifications according to the number of distinct
time variables needed to express it in a time explicit
formula.

1. Single Time Instance Specification -
Invariance. Having only one time wvariable

it may be either existentially or universally quanti-
fied. If we choose the latter we obtain the notion of
Invariance - a property holding throughout all states
of all possible execution sequences.

Extending the binary relation R to its transitive
elosure R* we define the set of accessible states

X = {s|R*(s,,35)}

A predicate p(s) is invariant in the system if
for every accessible state seX p(s) holds.

(Vszx)p(s) i.e. Vt H(t, p)

Many important properties fall under the class
of invariance relations:

Partial Correctness: Consider a sequential pro-
gram with entry label &, and exit label & . To state

¥,

Y (%,2)17 we can claim the invariance of the state-
ment :

its partial correctness with Tespect to

(r = 2) W =ViEHI)

{.e. that it is invariantly true that whenever we
reach the exit, if the input satisfies its specifi-
cation then so does the output.

Clean Executimzs-m In all realistic situations
it is not sufficient to prove that on terminatiom the
result is satisfactory. Ome should also see to it
that on the way, no step is taken which will cause
the program to behave 1llegally. Thus, attentienm
should be paid to the host of potential mishaps such
as: zero division, numerical overflow, exceeding
subscript range, etc. Taking as an 1llustration the
zero division case, let R4, Bjy,.. 4 be all the

locations at which division is executed, and ¥,,¥;,

¥y the respective divisors. The statement of zero

division fault freedom is the invariance of the claim
(m =12 =y, Yo)r .. Aln = Ly SV, ¥ o)

A variant of this (counter boundedness) can be used
also to establish termination.

Mutual Exclusion Turning now to concurrent
programs, let us consider establishing mutual exclu-
sion of eritical seetiens in two concurrent programs.
Let §; be the critical section in the first program,
i.e. a subset of the labels of the program, and 8

48

the second critical section. Then the statement of
mutual exclusion amounts to the claim of invariance:

N(I’l‘a?’_ A 112:52}
Deadlock Freedmzl‘zz. Consider a set of con-
current programs which communicate via semaphores. A
deadlock will be a situation in which each of the pro-
cessors is waiting on a 'p' operation and none of the
semaphore variables which are waited for is positive.
Since each of the programs is of finite length, and
enly in a finite subser of their instructiomns are
there "p' operatioms,it is possible to censtruct a

finite 1ist of label vectors £}, 22,.. &¥ such that

each !,.i" labels a 'p' instructien in the jth program.
Correspondingly we can construct a list of vectors of

variables Br, GZ,..n° such that Gl contains all the
semaphore variables waited on in the instructioms

labeled by i'. Deadlock freedom is guaranteed by the
invariance of the claim:

(F=ilsutdo)n... A(F= if=ut 4 o)

2, Two Time Instances - Eventualit

Implication)

The most useful two time variables statement (by
no means the only cone) is that of eventualit
(Temporal Implication) We write P 2% for

th Qtz (t; » ty) H(t),¥) D H(E.Y)

Temporal

i.e. for every execution G'= s, IR whenever there
exists an gy such that P(sy) there must exist a later-
8 j » 1 such that \P{sj).

An important instance of an eventuality is that
of total correctness . For a sequential program with
entry label "o and exit label £ , the statement of
total correctness with respect to predicates &,
can be expressed by the eventuality:

(r = koA W@) 2y (= A Y)

i.e. if we enter the program with input values satis-
fying (P, we will eventually reach the exit point
with varlables' values satisfying fP :

In applying eventuality specifications to non-
deterministic and concurrent programs we must

distinguish between terminating and eyclic pragramsu.

Programs of the first kind are expected to terminate
and present a result of their computation. Total
correctness for them involves guarantee of termin-
ation and of satisfaction of the cutput predicate on
termination. Generalization of these to concurrent
terminating programs is straightforward (in the
formula above replace m, L, & by their vector
counterparts).

Cyclic programs on the other hand are not
supposed to halt and are run for providing cotinucus
regponse to external stimulii. A typlcal example
will be an operating system which runs continuously
(hopefully) and is expected to respond to both ex-
ternal events, and requests from user programs which
for modelling purposes can also be emsidered external
stimulii. For this type of programs the notion of
total correctness has to be extended. We claim that
most of the reasomable extensions fall into the
category of eventuality. To mention few, there is
the property of accesibility. Usually in a mutual
exclusion environment there is the dual property

(termed liveness in [161) of any of the processors
eventually being able to access its critical sectien
once it set its mind to ic. If we denote by i the
location in the program where a processor decides it
wishes to enter and by 5 the set of lecations campri-
sing the critical section, then the following event-
uality expresses accessibility:

(v = 2) "Zy (mes)

A more general property is that of responsiveness
which 1s appropriate for the operating system model.
If an external stimulus such as a user program making
a request for a resource 1s signified by setting a
request varlable to 1, or more generally by making &
became true, and the system response of granting this
request is signalled by causing Y to became true,
then the general correct responsiveness property is
expressed by P 'ZV which guarantees that for every
request, there will eventually come a correct res—
ponse,

The Rest of the Hierarchy

These two, admittedely important, constructs by
no means exhaust the range of interesting and even
useful properties of programs. For example, continu-
ing in the veln of stating properties of coperating
systems, there is the question of fairness in granting
requests, This for example could state that if at t;

user A requested a resource and then at a later tg

ugser B requested the same resource then there will be
a tg when user A will be granted his resource such

that at no intermediate t, I‘.l £ty £tq was B granted

it,sidestepping Asprior request. This seems like a
four variable statement and not too farfetched one.

Beyond the complete range of qualitative state-
ments about ome event preceding the other, lies
another domain of questions relating to the quanti-
lative relations between timely events. If the system
is going to respend, will it respond within 10 ws, 10
ms or 10 seconds?, ete. In this paper we address
ourselves anly to the two "simple" cases of imvariance
and eventuality.

3. General Proof Principles

Following the description of the statements we
would like to prove we present a survey of three proof
principles. These will be described first in the
general system framework and then applied in turn te
sequential and then concurrent programs. When parti-
cularized to programs of either type they will be
shawn to reduce to known methods for some of the cases.

A. Invariance: The universally accepted method for
establishing invariance is that of induction:

@is
Vs, sl @s) nn?g. s @)
(VseX) P(a)

(P1)

This is obviously the principle of computational
induction., Clearly, a preperty which holds initially
and 1is transferred along any legal transition (is

1nductlwej'3} is invariant. Naturally when wishing to
establish the invarilance of a glven property (such as
correctness on exit) it will usually have to be gen-

eralized. This will correspond to the known method of

inductive asserci cnsg .

B. Well Founded Sets. This method is e of the two

49

that we present for establishing eventualities. We
bring here only its natural number version, but its
extension to other well founded sets is readily avail-

able and described > .

Let A(s,n)} be a predicate depending on the state
8 and a natural number n » o. Then

Ps) =30 A(s,n)
A(s,n)AR(s,s1) 2a(sl,n-1) v Y(s)
YY
The above principle incorporates both the notiem

of invariance realized by the family of invariants A
(s,n) and the notion of well founded set. The basic

(P2)

9
idea is also due to Floyd , and many presentations
similar to the above appear in the literaturel8:16, 13,

C. Reasoning About Eventualities

In this approach one derives simple eventuality
relations directly from the system transition rules
(R) and then use cambination rules, and general
logic reasoning to derive more complex eventualities,
The method was first introduced by Burstall® and

developed further, in an informal form 19,‘2&.’ under
the name of the Intermittent Assertions method. Two
formalizations of the method are suggested below and

some alternate formalizations are given in (3] angl15]

From its inception this method had several
advantages over method B above:

a.It 15 more powerful than method B.As indicated

in (19] any proof using methed B can always be con-
verted to a proof in the intermittent assertions
methoed, and there exist some classes of programs
(notably theose which are obtained by translating
recursive programs into iterative programs) for which
a natural proof exists in method €, and any possible
proof in B, will necessarily be overly cumbersome.

b, Proofs in C are inherently more intuitively
appealing ("natural"). While B is essentially a proof
by negation appreoach, showing that infinite or wreag
canputations are impossible, C adopts the more posi-
tive approach of establishing a chain of inevitable
events, which following one another, will lead to a
correct terminatien (or attainment of objective).
Thus, similarly to any good assertions method, it not
only formally proves the program's correctness, but
glves the prover (and the reader) a better insight
into the structure and execution of the program.

The following axiomatic system (ER) is a sug-
gested formalization for temporal reasoning about
events in a system.

Axians
Vs,sl p(s)aR(s,s))>q(s)) => p2Zpq (AL
P>q => p2q (a2)

Inference Rules

13q, Va,s! r(s)AR(s,s1) or(s)) => (pAr) Z (qar) (RD)

?eq, 9%t => p G T (R2)
P p.z“zrq => (py¥Py) % 4 (R3)
PZq => (Jup) Lp g (R&)

r

In addition we take all theorems of the first
order predicate caleulus as axioms.

The axioms enable us to derive elementary eventu-
alities, (Al) says that if for all one step transi-
tions, p before the transition implies q after the
transition, then p Z,q 1s established. (A2) states
that logical implication is a special case of tempo-
ral implication. The inference rules enable us to
deduce complex temporal implicaticns from simpler ones,
Thus (R1) may be considered as either a Frame axiom or
an invariance rule which adds an arbitrary invariant
to any eventuality.

Note that once the connective 2, is introduced,
it may participate in any arbitrary logical ex-
pression using the other logical connectives, and the
usual rules of logic applied to derive proofs.
Thus, for example, the general integer inductiem
scheme will yield the following induction principle as
a special case:

ple) Bq
p(n) Zp q ¥ p(n+l) Zq (1)
p(n) Zq

From which we may cenelude 3n p(n) Zpq (by (R4)

Theorem 1 The system (ER) 1is sound and canplete for
proving any property of the form @Z Yy .

Proof's Sketeh:
Let ¥z,¥ . Assuming the assertion language to be

expressive, we can formulate in it the predicate
p(s,n):

(Completeness)

"Every execution starting with s will reach in no

1 guch that l}'(sl) holds."

more thanm n steps a state §
If we assume that ocur non determinism is bounded
(L.e., for each s there is at most a finite number of

different s such that R(s,sl) holds) then ey

must imply by Konigs infinity Lemma that:

1. Y(s)>3n p(s,n) 1s valid and hence provable in the
logic.
Similarly from the definitiom of p(e,n) the follew-
ing claim is valid and hence provable:

2, pls,n+l)\W(s) v [vsl R(s,s}) >p(sl,n)]
from which
3. p(syn+l) Zulp(s,n) v\ (s)] 1s provable by (Al)
4. p(s,0)=¥(s) By the definition of p
frem 3., (R2) and (R3):
5. pls,n) BWs) => ps,n+l) Y (s)
By the Induction principle (I} 4. and 5.
6. p(s,n) Z Y(s)
7. 3n p(s,n) BY(s) by rule (R4)
8.PZYby 1.,7., (R2) and (A2).

4. Application to Sequential Programs

We will now consider the application of the gen-
eral principles to sequential programs showing that A.,
B. reduce to the known Floyd's methods? while C. forms
4 formalization of the Intermittent Assertiomns methodd
19

Invariance Censider a general assertiom on a deter-
ministic sequential program q(m,u). By considering
that n may assume only a finite number of values

me i, .0,) we can always rewrite

a(m,u) = (1 = £) Dqlt, u)

Alr = 17) 2q(2y, w)

Al =2)sq(iy, v

Consequently, we can express any global assertion
q(r,u) as a set of local assertioms qq(u) = q(l.i,uJ

attached at each program locatiom Ly y i=0,.. m (full

annotation)., We call this rewriting attachment. Con-
versely any network of local assertions i | i=0,..m}
can be grouped to form a global assertiom.

1(".“)’/\[(“ = 44) >qy(u))
(3

If we examine the proof primciple (P1) subati-
tuting the attachment form of g(m,u) we get the
following conditions:

95uy)

For each £: qx(u):::qnl(u) (T, ()

i.e the initial values u, should satisfy q and then
considering any lecation £ in the program, let N, (u)

denote its successor location (if L labels a cen-
ditional Nl. will depend on u) and Ty (u) the trans-

formation ud-'ri(u) affecting u on going from £ to Ng.
We require that if qx(u) is true at ! then 9, should
L

be true at 11’_ for the transformed values. These are

exactly the verification conditions for Floyd's method
in the full annotation case. As a result the princi-
ple ensures that q(w,u) is invariant throughout the
executien, in particular if execution reaches the exit
point L then qu(u) holds. Thus partial correctness

with respect to qg, L has been established.

Eventuality (Total Correctness) In an identical way,

methed B for the sequential case can be shown to be
equivalent to Floyd's well founded sets methed.

Consider now the method of temporal reasoning (C).
When we study the informal intermittent assertions
method, as exemplified in [19], we find that the
basic statement is:

"if sometime p{u) at Ly then sometime (later)

q(u) at i,"

Ll' iy belng program locations (labels).

This can obvicusly be formulated as the tempora l
implication:

[r=iAp(w)] Z(r = Eaaglu)]

In order to complete the formalization we should
clarify the form that axiem (Al) and rule (R1) will
assume in the sequential program case. 1In its most
useful form we will consider an arbitrary finite path

in the program:

O o0
r(u) T j(u)

p(u) q{u)
Let ry(u) denote the condition on u at 1 such
Let T,(u) des-

cribe the transformatiem applied tou along ol . Then
(Al) for the path ol will be:

that the path ol will be tra versed.

Yu pwrsr) aq (1) =

[r=iap(u)] Zpln = Ja qlu)]

For the more formally minded we should restrict
the path to a single statement and consider the
system (ER) augmented by a finite number of axiams
which are instances of (Al), cosildering any of the
possible types of statements.

It is now an exercise in formalization to take
any of the proofs in [19], justify the basic lemmas by
instances of (Al) and transitivicy (R2) and work
out the higher level lemmas and theorems using the
induction primciple (I).

Consequently (ER) is not only formally complete
as proved in theorem 1, but as just shown 1s a natural
formalization(describing the formal machinery required
for a system implementing the intermittent assertion
method) of a method distinguished for its intuitive
appeal.

5. Concurrent Programs

Besides offering some additional insight into
known methods for sequential programs, the main justi-
fication for the uniform approach suggested here is
the strong guidelines it provides for verification
metheds for concurrent programs.

Invariance Using the next location function N and the
next transformation function T it is straightforward
to rewrite the general Invariance principle for com-
current programs:

qm g uy)

For each 1=1,..n
q{nl, ST u]::aq(rrl, ..11:1_1,11(11'1,;1). LI

T{"l, ul))

q(m;u) 1s invariant.

The main problem and rationale for the different
variations of this general principle is the coamplex-
ity of q(m;u) and of the set of verification condi-
ticas.

‘'The most straightforward and inefficient approach

is that of full attachmentl. Similar to the sequen=—
tial case we rewrite for the two program case:

Q{Tfl. “2: u) = [(“]_-i"‘“z - j)inj (u}]
i,]

This gives rise to a number of local assertioms
which is proporticmal to the product of the sizes of
the participating programs, and a corresponding num-
ber of verificarion conditions.

An improvement on the above is the idea of using
only partial actachmentc:

q{mq mei u) -/\[(ﬂl-i):pi(ﬂz,U)}‘/\l(Trz"j):qj(rrl.u)]
i b}

i.e. at each point in each of the programs we attach
a local assertion which might still depend an the
location of the other process. This dependence is
sometimes implicit and 1s expressed by use of addi-
tional eontrol or shadow variables, Formally the
nunber of assertions is now proportional te the sum
of the sizes of the individual programs. However, if
the interaction between the programs is high we may
have to consider in the verificatien conditions all
possible values of the opposite processor, thus
regaining the exponential complexicy.

51

On the other hand if the interaction is loose (as
is very often the case) we do get an appreciable im-
provement and approach linear complexity (sum of sizes).
All the advanced methods suggested im [2], [21], [22]
and [16] may be roughly classified as partial attach-
ment methods.

Another prewising approach dees no attachment at

all 13'10'12. but works directly in terms of global
invariants, and the verification conditions presented
at the beginning of this section., The dependence on
location is usually expressed in more uniform way,
sometimes arithmetic, than that of case enumeratiom.
When successful, this will also yield linear complexity
Since this method is less familiar we enc lose a
correctness proof of the producer-consumer problem
taken out of [10].

Example 1 (Producer-Consumer)

| Consider the producer - consumer concurrent pro—
gram in Fig. 2. The producer places an item in the
buffer after its production while the consumer removes
it from there. These operations are represented by
respective incrementation and decrementation of n -
the buffer's current lecad.

We wish to prove:

a. The preoducer and consumer are never simula-
taneously at their respective critical sectioms
(mutual exclusion)

b.
exceeded.

0 gn gN i.e. the buffer capacity is never

¢. There iz no deadlock.

Tao prove these three properties we prove first the
invariance of the following three glcbal assertioms.
Note that the dependence on the processor's poilnter
value is expressed in terms of the three character-
istic functions my, ry, sy, 1 = 1,2 which assume the

value 1 on some locations and 0 on the rest.
Invariants:
(1
(2)
(3)

ml+m2+'bﬂlTEK- 1
ry + ry + IS_EMPTY + IS FULL = N
sq + sy + IS5 EMPTIY = n

To establish each of these, check that they hold
in initial state and then consider each possible
single transition of each of the processors. We will
use (1}-(3) now in order to prove a-c.

a. Assume that both precessers are in their
critical sections. We hawve then my = my = 1 which by

(1) implies MUTEX = -1 in contradiction to MUTEX being
a semaphore,

b. From 3, since IS5 _EMPTY 1is semaphore and 5
Sy 3 0 we get n 3 0. By ohserving that s, & Ty
i=1,2

substitute (3) and bound it by (2} te get n = s
+s, +IS_ EMPTY gry + r, + IS EMPTY = N - IS FULL N

¢, A deadlock can occur omly if the two pro-
cessors are waitiog on a p operation. None can wait
on a p(MUTEX) since then, assuming, say, that T is

walting we get m, = 0, MUTEX = 0 which by (1} implies

1

my = 1 which means that my is in its critical sectim
and cannot be waiting on a p. The remaining possi-
bility is that the producer is waiting on p(IS_EMPTY)
and the consumer on p(IS_FULL) but that means that

ry = r, = I8 EMPTY = IS_FULL = 0 which by (2) leads to

¥=0 in contradiction to the buffer having positive
capacity.

Many other cases of program synchronized by
semaphores can be handled im a similarly efficlent way
employing global assertiens and arithmetized lecation

dependenc el2,

To summarize the issue of the complexity of con-
current program verification, it seems always possible
to contrive an example which will defeat any proposed
method by causing 1t to beceme exponentially complex.
On the other hand we may bring once more the meta-
physical argument advanced in [2], namely, that after
all it was a human programmer who wrote the program
and believes it to be correct. He could not have
possibly considered an expomential number of cases
and must have had some very few gulding reasoms for
writing it the way he did. It is the role of the
proof method designer to come up with a method and
language which will let him make these reasons more
rigorous (and more conscicus) and generate an
efficient natural proof.

Eventuality and Tense Logic

The method of well founded sets for termimation
or other eventualities can also be similarly con-
sidered with either full, partial or no attachment

13, 16
'™, However the dissatisfaction at its indirect-

ness is even more intense then in the sequential
case.

Consider next application of temperal reasoning
to concurrent programs. A first attempt at formali-
zation was done in [10] and reported in [11] by the
explicit introduction of a real (or integer) valued
time parameter for each event. Thus, we write H(t,p)
for the statement that the assertion p is realized
(holds) at the time instance t. Obvicusly any kind
of dependency on time can be expressed by this power-
ful device. On the other hand it might be too power-
ful and obscure the question of which properties of
time are really essential in order to establish simple
properties such as temporal implicatiem.

The system (ER), on the other hand, seems too
weak. This is scmewhat surprising in view of its
completeness. But this proves to be the case In the
sense that we find it difficult to express natural
intuitive arguments for the behavior of concurrent
programs in (ER).

Obviously, we are not the first ones to face the
problem of finding a minimal basis for temporal rea-
soning without taking the brute force approach of
installing an explicit real time clock variable.
Rescher and Urgquhart in their book "Temporal Logle
glve a survey of different logical systems which
increasingly capture more and more of the properties
of time. Out of this selection we adopted a fragment
of the tense logle Kb. which we would like to offer

w23

here as a verification tool for temporal reasoning
about c oncurrent programs.

We introduce twe basic tense operators, F and G.
Denoting the present by n we can describe semantic-
ally

52

F(p) - It will be that p-Ftlt 3 nAH(t,p))
G(p) - Henceforth always p - t[t » n>H(t,p)]

F and G are unary operators which may be used in
constructing arbitrary tense well formed formulas
(tWFF'a), using also the conventional legical com-
nectives and quantifiers. The temporal interpretation
of a formula W involving no tense cperators is that it
helds in the present.

In our study of systems the absolute present is
identified with s the initial state. For clarifi-

cation let us consider some tense formulas and their
system interpretation:

p - p holds at s,
p>Fq = 1f p holds at so then at a future instance
g will hold.

p>Gq - if p holds at 8, then q is invariably true for
all states.

G{p =Fq) = Whenever p is true, it will eventually
be follewed by a state in which q will be true
(note that this matches our notion of eventu-
ality)

G(p>Gq) - Whenever p is true, q will be true there- '
after.

Our formal system contains the following axioms:

G{A>B) = (GADGE) (G1)

GADA (The future includes the present) (G2)

GA SGCA (63)
Where A and B are arbitrary ctWFF's,
By defining FAr " G(7A) we can derive the follewing
counterparts to G2, G3:
ADFA (F2)
FFASFA (F3)

The follewing are the inference rules:

If A is a classical tautology then | A (RT)
kA =>FGA (Generalization) (RG)
A, FASE = B (MP)

Rule (RG) deserves special attentiom. It is

based on the assumption of homogeneous development and
that every statement which is provable for the present
must be equally true in all possible futures. As long
as the only way to prove basic facts about the present
is through rule (RT) this assumption 1s justified.
However if other means of deriving facts about the
present are introduced, the use of rule (RG) has to be
restricted.

The K, fragment introduced here differs from the

one presented in [23] by several aspects:

1. In our presentation we consider the present
as part of the future.

2. While the original centains primitives for
events both in the future and in the past, we find it
convenient and adequate to work enly in terms of the
future operators. Therefore, only these operators
are introduced and discussed.

3. To the pure tense logic we have to add "do-
main dependent” axioms, restricting the future to omly

these developments which are consistent with the
transition mechanism of the system. These will be
discussed later.

The keen observer would have realized by now that
the system presented is completely isomorphic to the

modal logle system 542?'23. Indeed ome way of arriv-
ing at 1t 15 to give a temporal interpretaticn to the
basic notion of modality, regarding "poassible wor lds"
as "worlds developable in the future starting from the
present world". In this isomorphism G stands for (J
and F for { . We resist full identification of the
two not only because of typographic reasoms but
because we believe that the full K, and even more

powerful tense systems will have to be used for prov-
ing properties stronger than eventualities, Once one
introduces possible worlds both in the past and in the
future the correspendence between G and [J fails.

On the other hand in our discussion we will fully
utilize this isomorphism as exemplified in the
follawing:

Theorem 2 The system given above (pure, propositiomal
future restricted K, fragment) is complete (in the

absolute sense) and decidable.

For completeness we may modify the proef in [23]
showing the completeness of the full Ky. For decid-

ability (which subsumes completeness) we may turn to

known decidability results of 3&2"‘*30+ We even have
same results on the complexity of the decidability

procedurezg.

(Quantifiers: Fram the universal character of G
and the existential character of F the following
axloms make sense:

6(Vxp) =¥ec(p) (QL)
F(3xp) = AxF(p) (Q2)
F(V xp) = VxF (p) (Q3)
FAx G(p) > G(Fxp) (Q4)

Hon Pure Axioms

These are additional axiems which restrict the
future to be consistent with the system, and tie the
reasoning teo the particular system or program we wish
to study.

Invariance Axiom:

The first invariance axiom is identical to the
invariance principle (P1):

pisy)

p(s)AR (s,sD)op(s)h)
+ Gp

(11)

The second invaraince axiem is more general and
it allows us to prove imvariance of q not necessarily
starting from the beginning but from the first time
that p becomes rrue, i.e. fram a certain moment on.

P21
als)a R(s,s1) >q(s])
F p>Gq

(12)

In fact, the more appropriate form for the con-
sequence of (I2) is FG(p=Cq), however in view of
(RG) and (G2) the two forms are equivalent,

Eventuslity Axiom:

53

Egs!nngsls]-!:ggaal}

p=Fq (®)

This enables us to derive the most elementary
eventualicies, those holding across a single transition
of the system.

Inevitability Axiam:

If we intend to prove termination or accesibilicy
we must give expression to our assumption of fair
scheduling, which assures in a concurrent process that
every processor will ultimately be scheduled to take a
step. In order to capture this notion within the
system framework we partition R = Ay into a

finite number of actiens: G- {ﬁii + To the usual

definition of execution sequence we add the restric-
tion:

For no Ae (f 1s there an i such that
ViG> D240y, sy, (®)

i.e. no actic can be indefinitely delayed. In cur
model of comcurrent programs, each of the actions is
one of the processors taking a step. With this nota-
tion we have the following axiam reflecting the weak
inevitability property:

p(s)AR(s,sl) A" A(s,s1) o p(sl)

p(s) AA(s, sV mq(s)
p=Fg

(M)

i.e. if p is invariant as long as A is not executed, '
and if executien of A when p is true causes q to be-
come true, then emce p is true q is inevitable (since

A must eventually be executed).

A scheme of a proof in our system will consist of
two separate phases. In the first phase we reason
about states, immediate successors and their pro-
perties, proving all the required premises for the use
of the axiems (I1),(I2),(E),(N). This phase culmin-
ates in deriving a set of basic tense formulas using
the demain dependent axioms. Tts role is to translate
all the relevant properties of the program inte basic
tense-loglec statements. The next phase is purely
tense logical (damain independent), uses mly the pure
rules and manipulate the basic tense logical state-
ments into the final resule.

Consider examples of utillzatim of the axloms
(1), {(E), (N) under the concurrent programs context.
Axiom (I1) may be used to derive global invariants.
Example 1 is a case in point. To verify the ante-
cedents of (I1) one has to assume that P currently
hold and consider all possible one step effects of
each of the processors, showing that p is preserved.
A simllar verification is performed in order to
establish the antecedents of (E). 1In faet (E) 18 only
infrequently used, This is because in analyzing a
concurrent program we are either able to gshow in-
variance independently of which precessor moves, or to
indicate development because of the action of one
specific processor. It is only rarely that we can
trace development (geing from p to q) independently of
who moves next.

An example of the use of (N) is given by the
following situation:

i.e. one of the processors is currently at location £
and 1s about to execute B which will cause q to be-
cane true. We can then use (N) to establish

(n=2) > F(r=21a q)

A more intriguing case is when B is a statement
depending on scome right hand side variables which in
general can be altered by the other processors thus
preventing q from becoming true. In scme cases the
only one who may alter these variables is m itself
and then we use the fact that as long as n remain at
% it cannot perform any alteration and hence once it
moves g will be true.

Ancother interesting cns:F is:

lB

T

.8,1 ‘{,H

It might be the case that p>t, and as long as
v does not move p remains invariant., We use then (N)

to derive that m=i! is inevitable.

E

Theorem 3 K, fragment is at least as strong as (ER)

Proof Express p Zsq as p>Fq. It 1s then possible
to show that all the axiams of (ER) are theorems of

K, fragment.

Corollary Kh fragment is relatively complete for
proving temporal implications of the form pFq.
wWhile this theoretical result does not show any

advantage of K over (ER), the following example may

serve to show how a relatively informal proof of
eventual correctness of a concurrent program is
naturally formalized in K‘b'

Example 2: Consider the example of the Mutual
Exc lusion problem presented in Fig., 1. For simpli-
fication in notation we use the following abbrevia-
tions:

ay for my = oy i=1,..8

B,I for “Z'Ej j=1,..8
ey for ¢y = 1, Ei for ¢y = o 1=1,2

t for t=1, t for t=2

P for Ip where p is any of the above.

pin - ::1-'\ Blhcl-ﬁczﬂt

The theorem we would like to derive (accessi-
bility) is: a; = Fag

We start by deriving the following invariants:

11: €)= a; vao, Vo
12: €y = Blvszvsa
I4: usau?\fﬁs ABg
{Their actual form should be GIl, etc) All these are

dirvect censequences of (Il). In particular GI

3
proves mutual exelusien.

In the sequel we will use stronger versions of
(I2) and (N) which can be derived from them

54

10

P1=9

q(8) A py(s1) AR(s,81) > q(sh) .

PyA sz = Gg

py(a)a R(s,81) 4 A(s,s1)a p, (sD) >py (D)
p1(8)a A(s,81) A p,y (1) q(s?) (D)

pyn Gpy=TFg
Lemma A u‘.n t Fag

We use (DI) to establish
(B‘.ﬁ t) A GES=G((U-3V uﬁ}'\ t)

Consider now all possible locations of wj.
By I,

Con-
sider first Ty = 33.

By >y
Using (DI) again we get:
Bg "‘G([uav n4)h I:}:Gﬂs
Also Gﬂ'a: Geg
Summarizing the above we get
(@, At)AGa;ABgDC((agvag) Atac,)
By (DN):
azAG((agvadatacy)>Fag
Similarly
a,AG((ayva,) Atacy)>Fa,
Hence we can join these two together to get:
BEA Gl‘_‘a FuS
where we denote G = G((u3\-‘u,|}»t)
Similarly we can get
CyABg>F(G, A Bg)
Gy A Eg':lF(Gln Bgl)
And can further produce under Gy the chains of

temporal implications

By 258y 28,3 8, 2, B, 2,8y 205
and
Bs 2,87 2,8,
Thus regardless of where 7, is we derived
(g A t) A GEg > Fag

By the Lemma in the Appendix this implies:
a At 2 Fag

Lemma B GE(uﬁ\r‘aE‘qu)n?:Ell

Informally: When " first enters Gy £y = o and

hence 7, 7 B1. The only exit to 8 is by making t=1.

Lemma C ag = FU‘S
Informally: Consider the next test of t by myat ag
(inevitable). If t=1 we can follow events to Qp,0g. -

We then either enter ag or get to ay with tel.

<

Henceforth by Lemma A, Fu.s.
If t=2 at ay then m, ¥Bp, c1= L
If ny = B then later wp = B3, t=l and remains so.
Otherwise we can follow
BgZbg Zby Bl BB F87Fa5
B, BBy,

Theorem a, > Fas.

If we do not arrive at ag we
If t=1 then by
If t=2 we get to ag and lemma

Follow mw; to age.
get to a, and eventually test L.
Lemma 4 we get to as.
C ensures the same.

6. Finite State Systems

In conclusion we will consider the speclal case
of finite state systems. For finite state systems
the validity of eventualities (and other tense formu-
las) is decidable. Furthermore many difficult syn-
chrenization and other comcurrent programs happen to
be finite state, or are usually presented in a simpli-

fied finite state form (including example 2 above).

Consider the case of a system whose state set is
finite. For such a system we can consider all pro—
perties of the states as temporal propositions p(s)
(2 proposition possibly varying with time or state).
The values of these propositions can be evaluated for
each of the states and presented in a finite table.
Thus the tense formula to be proved will be a pro-
positional tense formula.

Let £ = <5,R, 5,7 be a finite state system,
where R -Yﬁ.’_, |$] <=. We can represent L as a
finite directed edge labeled graph G= < 5,E> whose
nodes are the states of I, and there is an edge

i |
5] —*s, iff Ai(sl,sz) holds.
of T will be a path in G, starting at s_, and such

that 1f it is infinite it passes infinitely often
through edges labeled A; for each of the A;. For
simplicity let us assume that there are no halting
states or deadlocks in the system so that only in-
finite execution paths have to be considered.

A proper execution

Theorem 4 The valddity of an arbitrary eventuality:
G(A=FB) is decidable for any finite state system L.

A axwd B here stand for arbitrary propositional
axpressions, but since they will always be evaluated
o staces we may as well consider each to be just a
single proposition, hence checking G(p =>Fq) for
validity.

We sketch below a semantic decision procedure:
Obviously, it is sufficient to verify that p =Fq holds
at each state im the graph G representing L. Also it
is sufficlent to consider only states s at which p(s)
= rrue. If also q(s) is true, the checking at s is
conc luded, Octherwise denote by G_ = qu, Eqi' the
subgraph, defined by deleting all states which satisfy
q. By our assumption s ¢ 5. p>Fg will be valid at

s 1fE Bq contains no infinite proper executlom se-

quence starting at s, because then every s executien
sequence in G must run into ome of the missing states,
i.e. a state satisfying q.

To check for the existence of a proper path, de-
canpose 3q into strangly connected campanents C),..Ck

11

53

where we assume that se (:1. We can construct a derived

graph whose nodes are the Cj such that Cy -+ Cy 1ff
there are sy € Cy, 5y € l’:j and 54 + 5y in Gq. Label

each of the nodes Cy by all the actions labeling edges
of nodes comprising Cj.

It is not difficult to see that Gq

infinite proper path starting at s if and only if in
the derived graph there is a path from C; to ome of

the components Cp which is labeled by all the acticns.

contains an

Once 1t has been semantically established that
the temperal implication is indeed valid in the system
it is not difficult to construct a formal proof in K
fragment proving the same.

The natural extension to Theorem 4 ie whether the
validity of any arbitrary tense formula is also deeid-
able on finite state systems. The answer is indeed
positive. However two extensions are needed to the
logical system to be able to express the proof for a
general tense formula.

The Initlal State Axiam:

plsy)

e

This enables us to derive properties which are
initially true.

a.

(P)

b. In view of (F) the generalizatiom rule (RG) falls
to be universally valid. Obviously any p which holds
only initially does not necessarily held thereafter.
We thus have to modify (RG) into:
"if F A then |- GA provided the proof
not invelve any use of axiom (P). "

of | A did
(MRG)

Thus the extension of theorem 4 is:

Theorem 5 The validicy of an arbitrary tense formula
on a finite state system is decidable, and the ex-
tended system K, is adequate for proving all valid

(propositional) tense formulas.
Discussion of possible proofs appears in
Appendix B.

7. Discussion and Criticism

Justifying the speclal system introduced here by
the ninimality principle (use the simplest system that
will werk - but ne simpler), we should be the first to
ask: Is the notion of external time or temporality
really needed in order to discuss intelligently and
usefully the behavior of programs? We hope that the
exposition made it clear that it is not needed in
order to reascn about imvariance properties of pro-
gram. How about properties of the eventuality type?
It seems clear that for deterministic, sequential
structured programs, temperality 1s not essential.
This is so because for these programs we have an
internal c¢lock, namely the executim itself. By
knowing the location in the program and the wvalues of
several leoop counters we can pinpeint exactly where we
are in the execution.

Therefore for these programs the simple temporal
notions of "before" and "after" the execurion of a
program segment, implicit in all the deductive systems

such as Heare's and more recent mas%'za are
ceompletely adequate. It is net surprising therefore
that for such programs, alsc the intermictent
assertions method has no advantage. On the other hand

: 1

when we attack programs which are cyclie, and hence
being in a location we cannot identify whether this is
the %irat or second time we are there, or nondeter~
ministiec, or concurrent, in which execution consist of
intermixing operations for different processors, or
even unstructured in which there exists a relatiom
between the "where" and "when" but may be very complex,
in all of these cases we must distinguish between the
"where" and "when" and maintain an external time scale
independent of the execution. Thus, our answer to the
query above, 1s that as soon as we get to discuss
eventuality for these more intricate type of programs,
scame temporal device 1s necessary.

Another point that 1s worth mentioning is that the
approach taken here can be classified together with

l-‘luyd'sg_ Burstall's® (also [4] which is very close in
spirit te our work). Manna and Waldinger's and

Hc,r.‘.arthy'szo as being Endogenous approaches. By that
we mean that we immerse ourselves in a single program
wvhich we regard as the universe, and concentrate on
possible developments within that universe. Charact-
eristic of this approach is the first phase which
translates the programming features into general rules
of behavior which we later logically analyze. This is
in contrast with Exogencus approaches such as Heare's,
Pratt's, Constables' and other deductive systems.
These suggest a uniform formalism which deals in
formulas whose constituents are both logical assertions
and program segments, and can express very rich
relations between programs and assertioms. We will be
the first to admit the many advantages of Exogenous
systems over Endogenous systems. These include among
others:

a. The uniform formalism 1s more elegant and
universal, richer in expressibility, no need
for the two phase process of Endogenous
systems.

b. Endogenous systems live within a single
program. There is no way to campare two pro—
grams such as proving equivalence or imclu-
slon.

¢. Endogenous systems assume the program to be
rigidly given, Exogenous systems provide
tools and guidance for constructing a correct
system rather than just analyse an existent
one .

Agalnst these advantages endogenous system can
offer the following single line of defense: When the
going is tough, and we are interested in proving a
single intricate and difficult program, we do not care
about generality,uniformity or equivalence. It is
then advantageous to work with a fixed context rather
than carry a varying context with each statement.
Under these conditions, endogenous systems attempt to
equip the prover with the stromgest possible tools to
formalize his intuitive thinking and ease his way to
a rigorous proof.

References:

1. - Aschroft E.A. and Manna Z (1970): "Formali-
zatien of Properties of Parallel Programs,”

Machine Intelligence &, Edinburgh University

Press.

2. - Aschroft E.A. (1975): "Proving Assertions
About Parallel Programs," JCS§ 10(1) 11

3. - Aschroft E.A. and Wadge, W.W: "Intermittent
Assertion Proofs in Lucid," IFIP, Teromto 1977,

&. - Burstall, R.M.: "Formal Descriptiom of Pro-

gram Structure and Semantics of First Order

56

12

11.

13.

14,

19.

20.

Logie" in B. Meltzer & D. Michie (eds.) Machine
Intelligence 5 (1970) 79-98, Edinburgh.

Burstall, R.M. (1974): "Program Proving as
Hand Simulation With A Little Inductiom,"
Information Processing, 1974, Worth Holland
Publishing Company, Amsterdam, 308-312.

Hoare, C.A.R. (1969): "An Axiomatic Basis Of
Computer Programming”, CACM 12(10).

Hoare, C.A.R. (1970): "Procedures and Para-
meters: An Axiomatic Approach", in Engeler
{(Ed.) Lecture Notes in Mathematics 188,
Springer Verlag.

Hoare, C.A.R. (1972): "Towards a Theory of
Parallel Programming', inm Hoare, C.A.R,
Perrot, R.H. (Eds.): Operating Systems
Techniques, New York Academilc Press.

Floyd, R.W.: "Assigning Meanings to Programs,"
Proc. Symp. Appl. Math. 19, in J.T. Schwartz
(ed.) Mathematical Aspects of Camputer Sclence,
pp. 19-32, 1967.

Francez, N.: "The Analysis of Cyclic Pre-
grams," Ph.D. thesis, Weizmann Institute of
Science, Rehovot, Israel 1976.

Francez, N. and Pnueli, A: "A Proof Method
For Cyclic Programs,'" Proceedings of the 1976
Conference on Parallel Processing, 235-245.

Francez, N. and Pnueli, A.: "Pro.ri.ng Proe—
perties of Parallel Programs by Global
Invariants," to appear.

Keller, R.M.: "Formal Verification of Parallel
Programs," CACM 19(7}) 1976.

Krbger, F.: "Logical Rules of Natural Reason-
ing About Programs,"” Third Intern. Symposium
on Autcmata, Languages and Programming,
Edinburgh, Edinburgh University Press, 1976,
87-98.

Kroger, F: "A Uniform Logical Basis For The
Description, Specification and Correctness
Proof Techniques of Programs'. Institute fur’
Informatik der Technischen Universitat Munchen.

Lamport, L (1976): '"Proving the Correctness of
Multiprocess Program,' Massachusetts Computer
Associates, Ine. Mass. 01BBO.

Manna Z: "Mathematical Theory of Camputation,"
MeGraw-Hill (1974).

Manna Z. and Pnueli, A: "Axiomatic Approach te
Total Correctness,” Acta Informatica 3, 243-
263,

Manna Z. and Waldinger, R: "Is "scemetime"
sometimes better than "always"? Intermittent
assertions in proving Program Correctness.
Proc. 2nd International Conference on Software
Engineering, San Francisco (Calif.) 1976, 32-
39.

McCarthy, J., Hayes, P.J: "Some Philesophic
Problems from the Standpoint of Artificial
Intelligence"” in B. Meltzer and D. Michie
(eds.) Machine Intelligence & (1969) &63-502,
Edinburgh.

Owicki, 5. and Gries, D.: "An Axicmatie

Proof Technique for Parallel Programs I ",
Acta Informatica 6,319-339,

2%, -

22, -~ Owicki, S. and Gries, D: "Verifying Proper-
ties of Parallel Programs: An Axiomatic
Approach", CACM 19(5) 1976, 279-284.
Rescher, N. and Urquhart, A: '"Temporal
Logic," Springer Verlag 1971.
24, = Schwarz, J: "Event Based Reasoning - A
System for Proving Correct Termination of
Programs'". Research Report Wo. 12, Dept.
of Artifielal Intelligence, University of
Edinburgh, Edinburgh, Scotland.
25. - GSites, R.L.: "Proving that Computer Programs
Terminate Cleanly," Stanford University,
Technical Report, May 1974.
26. - Constable, R.L: "On the Theory of Program—
ming Logie," Prac. of the 9th Anrual
Symposium on Theory of Camputing, Boulder,
Colorado, May 1977.
27, = Hughes, G.E. and Creswell, M.J: "An
Introduction to Medal Logic," Lendon:
Methuen and Co. Ltd, 1972.

Harel, D., Meyer, A.R. and Pratt, V.R:
"Computability and Completeness in Logics
of Programs," Proc. of the 9th Annual
Symp. on Theory of Computing, Boulder,
Colorado, May 1977.

29, - Fischer, M.J. and Ladner, R.E.: "Propo-
sitional Modal Logic of Programs," Proc.
of the 9th Annual Symp. on Theory of
Computing, Boulder, Coloradeo, May 1977.
30. = Kripke, S.A,: "Semantical Analysis of
Medal Logic I: MNormal Medal Propositionmal
Calcull," Zeitschr. f. Math, Logik und
Grundlagen d. Math. 9 (1963) pp. 67-96.

Appendix A
Derived Rules and Theorems of Kz

The following are theorems proved in [23):
I2 GpAFg2F(paq)
Corollary GpA Fq :;F(Gp Agq)

I3 Fipvq) =FpVFq

Corollary GpAGqDG(paq)

Lemma : PAG(Iq)DFq=> p =Fq
Proof:

1. Fpac(ng) =Fq Ass,

2, + Fq VTFq Tau.

3. = FqVvG(1q) by F's definition.

4. b+ pAFqoFq Tau.
5. b pa(FQV¥G(Tq))DFg 1,4

57

13

6. poFq 3,5

Appendix B

Discussion of the proof of Theorem 5 :

Theorem 5 may be proved by reduction of the problem
of validity of propositional tense formula m a finite
state system to that of the validity of a formula in
the Monadic Second Order Theory of Successor . This
is dene by relatroducing explicit time variables .
Referring to the definitions and results of [31] ,
there is a decision algorithm for the valldity of
formulas in this theory .

Alternately , it is possible to recomstruct the
proof for our specilal case :

We first cbserve that for a given finite state
system L it is possible to construct a finite state
autamaton Ay which will accept exactly those infinite
sequences 8p,8, , ... which form a proper execution
sequences of I”. Denote the language of infinite
words defined by Ap by L(Ap)S 5S¢ . We then show that
for each propositicnal tense formula W , We gan
construct an w-regular language L(W) which describes
all those 5¥ sequences an which W is true . This
costruction is defined inductively by the rules:

L(p)=(sy + .. +5) s¥
where Sy, ...8 are th¥se states out of 5§ on which p
is true .

L(aW)= S¥-L{W)

LWy A W,)=L{W,)0 L(sz

L(Hlv Wo)=L(WpU L(W3)

L{FW)=5*L (W)
L(GW)=L{T1 FIW)

Since the family of w-regular languages is ¢ lesed
under all the operations used above s this gives an
effective way to construct L(W) . Our decision prab lem
reduces then to the questim:

is L(AE} £ LW ?
i.e, do all propér execution sequences of ¢ satiafy
W 7 . This problem_is known to be decidable for w-
regular languages 47 ,

31. - Buchi,J.R. :"On a Decision Method in Restricted
Second Order Arithmetic" , International Cagreas
on Logic Methodology and Philosophy of Science,
Stanford , California (1960) .

32, - McNaughton,R. : "Testing and Generating Infinite
Sequences by a finite Autamaten" , Information
and Control 9 (1966) 521-530 .

33. - Landweber , L.H.:"Decision Problems for w-
Automata " , Mathematical Systems Theory 3
(1969) 376-384 .

