
5 Darkroom Software

If you have a home computer, some way to display a graphics image, and
maybe even a way to capture images from a digitizer or a video recorder, you
can easily build your own digital darkroom tools. To help you get started I will
discuss a small interactive image editor named popi (pronounced ‘‘po-pee’’).
It is a portable version of the editor pico (‘‘pee-ko’’) that was used to generate
the pictures in this book. (Popi is short for por table pico.)

The most noticeable difference between pico and popi is speed. Pico has a
built-in optimizing compiler that translates transfor mation expressions into
machine code for a DEC VAX computer. This compiler dramatically improves
the perfor mance of the editor, but of course, it wor ks for only one specific tar-
get machine. Instead, popi translates the transfor mation expressions into pro-
grams that are interpreted by a little portable stack machine. This reduces the
efficiency, but makes it possible to use the editor on any machine that can
compile C programs.

Popi

The discussion that follows explains how popi works, how you can use it to
create and edit images, and how user commands are parsed and executed.
The editor is for black-and-white images, stored in disk files in raw for mat: one
byte per pixel in scanline order, top scanline first. There are a few other
restr ictions to popi’s command language that you may or may not want to
remove once you have this software running on your system. This version of
the editor, for instance, does not know any trigonometr ic functions and does
not know about polar coordinates. It will be relatively easy to make the exten-
sions. Some hints on how to do that are given at the end of this chapter.

75

76 BEYOND PHOTOGRAPHY CHAPTER 5

The resolution of the images you can process depends only on the amount of
memor y available on your system. The more memory, the better. The version
discussed here wor ks with 248×248 images, for which you will at least need
200 kilobytes of main memory in your system.

Command Language

Popi accepts five types of commands. The most important one is the image
transfor mation command

new = expression

that was used throughout this book. The other commands are

r file

to read an image from a disk file into a read-only buffer,

w file

to write the result of the last transfor mation into a file,

f

to show which files are currently open, and

q

to quit the editor.

Let us ignore the precise structure of the transfor mation expressions for a
while. We retur n to that in the section titled Grammar Rules. We look first at
the global structure of the editor. Commands can be typed on a single line
separated by semicolons, or on separate lines. An edit session with popi, for
instance, may go as follows.

$ popi
-> r rob read image ‘rob’ into a buffer
-> r pjw read image ‘pjw’ into a buffer
-> f check which files are open
$1 = rob
$2 = pjw
-> new=rob-pjw subtract pjw from rob
-> w prob wr ite result in a file ‘prob’
-> q quit
$ operating system prompt

The arrow -> is the editor’s prompt: it tells the user that the program is ready
for a new command.

Program Structure

The image editor is written in the programming language C. It has four parts:

• a lexical analyzer,
• a recursive-descent parser,
• a file handler, and
• an interpreter, built as a stack-machine.

CHAPTER 5 DARKROOM SOFTWARE 77

The figure illustrates how these parts fit together.

Consider what happens when the user (at the upper left-hand side of the fig-
ure) enters the command new = x ∗∗ y . The command is first read by the lexi-
cal analyzer. The job of the lexical analyzer is to recognize some predefined
character sequences in the input, such as the image name new and the oper-
ator ∗∗ . Each predefined sequence is passed as a single token to the next
program module: the parser. The eight-character sequence new = x * *y is
passed as a sequence of five tokens (new , =, x , POW , and y) from the lexi-
cal analyzer to the parser.

inter preter handler
file

parseranalyzer
lexical

file system

Edit

Buffers

Image

Files

monitor

The Structure of Popi

The parser looks at the sequence of tokens and decides what type of com-
mand it is. In this case it will decide that this is an image transfor mation com-
mand since the first token is new and not, for example, r or w . The parser
then starts building a little program for the interpreter to perfor m the transfor-
mation. For our example the program should instruct the interpreter to calcu-
late a new value x y for each pixel (dot) of the image. The execution loop over
all pixels is a fixed part of the interpreter. Note that the interpreter evaluates
the complete transfor mation expression once for every pixel in the image
being edited.

If the user types the command r picture, the parser will invoke the file handler
to read the image stored in file picture. The image is read into a read-only
buffer and can be used as a source for image edit operations. The only
images that ever change during an edit session are the ones in the edit
buffers. There are two edit buffers: one is called new and the other is called
old . Buffer old holds the result of the last edit operation perfor med. Initially it

78 BEYOND PHOTOGRAPHY CHAPTER 5

is an all-zero, or black, image. The other edit buffer, new , is the target of the
current edit operation. After the completion of each edit operation the two
buffers are swapped; the result of the last edit operation becomes the start for
a next one. (Note that this makes it trivial to add a one-level undo operation.)

You will almost certainly want to extend the editor with a display routine, dot-
ted in the figure, to see the transfor mations on a monitor either while they are
being perfor med by the interpreter, or after the interpreter completes. The
specific display routine you will need, however, depends on the hardware you
use. A sample routine for bi-level displays is included at the end of this chap-
ter.

Throughout the program, librar y routines are used that can in one for m or
another be found on most systems. All librar y routines used are part of the
proposed ANSI standard C language definition, so it should be fair ly easy to
find or to provide for equivalent routines on most systems. The software
should run without change on well-known systems such as UNIX and MS-DOS.

Let’s take a closer look now at the different parts of the editor. At the end of
this chapter the complete program is listed.

The Lexical Analyz er

The task of the lexical analyzer is to recognize keywords such as new and
old , and identify operators that consist of more than one character, such as
>=, ! =, and &&. It must also find out when the name of an image file is used,
and it must recognize numbers and convert the corresponding character
str ings into integers. White space (space and tab characters) is ignored.
Ever ything that is not recognized by the lexical analyzer is passed on to the
parser untouched. Single characters which are not part of a predefined
sequence are treated as tokens with a code that equals their ASCII value. All
other tokens are written in capitals, e.g., POW , and are defined as integer
constants with a value greater than 255, the largest possible ASCII value.

The function getchar() is a librar y routine that returns the next available
character in the command typed by the user.

The tokens passed from the lexical analyzer to the parser can have two
attr ibutes: lexval and text . They are declared as follows.

int lexval;
char text[256];

Tokens of the type VALUE , for example, have a value attribute stored in the
integer var iable lexval . Tokens of type NAME have a str ing attr ibute that is
stored in array text . Tokens of type FNAME have both a value and a string
attr ibute. The FNAME token refers to an open image file. Its string attribute
gives the file name, and its value attribute is the number of the buffer into
which the image was read.

This is what the lexical analyzer looks like:

CHAPTER 5 DARKROOM SOFTWARE 79

lex()
{ int c;

do /* ignore white space */
c = getchar();

while (c == ’ ’ || c == ’\t’);

if (isdigit(c))
c = getnumber(c);

else if (isalpha(c) || c == ’_’)
c = getstring(c);

switch (c) {
case EOF: c = ’q’; break;
case ’*’: c = follow(’*’, POW, c); break;
case ’>’: c = follow(’=’, GE, c); break;
case ’<’: c = follow(’=’, LE, c); break;
case ’!’: c = follow(’=’, NE, c); break;
case ’=’: c = follow(’=’, EQ, c); break;
case ’|’: c = follow(’|’, OR, c); break;
case ’&’: c = follow(’&’, AND, c); break;
case ’Z’: c = VALUE; lexval = 255; break;
case ’Y’: c = VALUE; lexval = DEF_Y-1; break;
case ’X’: c = VALUE; lexval = DEF_X-1; break;
default : break;
}
return c;

}

The function follow (tok , ifyes, ifno) looks at the next character typed. If it
matches tok , the value ifyes is returned; if it does not match, the character is
saved with pushback () (more about that below) and ifno is returned.

follow(tok, ifyes, ifno)
{ int c;

if ((c = getchar()) == tok)
return ifyes;

pushback(c);

return ifno;
}

The librar y routines isdigit (c) and isalpha(c) retur n nonzero (a boolean value
true in C) when the argument is a digit or a letter, respectively. getnumber (c)
and getstring (c) are shown below. They scan the user command for a num-
ber or a text string starting with character c .

80 BEYOND PHOTOGRAPHY CHAPTER 5

getnumber(first)
{ int c;

lexval = first - ’0’;
while (isdigit(c = getchar()))

lexval = 10*lexval + c - ’0’;
pushback(c);
return VALUE;

}

File names are looked up in a structure src [] where the I/O handler stores
images. nsrc slots are in use, but the first two slots (0 and 1) are for the edit
buffers and are skipped in the search. We will talk more about this data struc-
ture in a little while.

getstring(first)
{ int c = first;

char *str = text;

do {
*str++ = c;
c = getchar();

} while (isalpha(c) || c == ’_’ || isdigit(c));
*str = ’\0’;
pushback(c);

if (strcmp(text, "new") == 0) return NEW;
if (strcmp(text, "old") == 0) return OLD;

for (c = 2; c < nsrc; c++)
if (strcmp(src[c].str, text) == 0)
{ lexval = c-1;

return FNAME;
}

if (strlen(text) > 1)
return NAME;

return first;
}

A few more librar y routines are used here. strlen(str) retur ns the number of
characters in the string, and strcmp(str 1, str 2) returns zero if the two given
str ings are equal. Nor mally, the lines with the function calls to strcmp() would
be implemented as a search in a symbol table, but since we have only a few
predefined symbols in this program, we can easily do without.

The last character read by routines follow (), getnumber (), and getstring () ter-
minates a symbol and may star t the next one. It must be saved for later, so it
is pushed back onto the input. The function pushback (c) can be imple-
mented with a one-slot buffer. In a UNIX environment it can be implemented
as ungetc (c , stdin).

CHAPTER 5 DARKROOM SOFTWARE 81

The Parser

Apar t from correctly decoding the transfor mation expressions, the parser must
be able to recognize file handling commands and respond to user inquiries.
The parsing routines never call getchar () but use lex () for all input. The rou-
tine parse() itself is called from the main() procedure repeatedly, until it
retur ns false (a value of zero):

main()
{

...
do noerr=1; while(parse());

}

The var iable noerr is used as an error flag that is reset each time the parse
routine is called. But more about error handling later. The parser will return
zero only on an explicit quit command q from the user.

parse()
{ extern int lat; /* look ahead token */

printf("-> ");
while (noerr)
{ switch (lat = lex()) {

case ’q’: return 0;
case ’\n’: return 1;
case ’;’: break;
case ’f’: showfiles();

break;
case ’r’: getname();

if (!noerr) continue;
getpix(&src[nsrc], text);
break;

case ’w’: getname();
if (!noerr) continue;
putpix(&src[CUROLD], text);
break;

default : transform();
if (noerr) run();
break;

} }
}

The parser indicates its willingness to accept a new command from the user
by printing a prompt -> with the I/O routine printf (string). The routine printf ()
is used in two flavors here. As shown, it just prints text on the user’s screen,
possibly with some extra arguments for printing numbers and character
str ings. We will also use it as fprintf (stderr , string) to print error messages.
(If your system has no separate channel for error messages, they can equally
well be printed with printf (string).)

Commands are typed on a single line separated by semicolons, or on sepa-
rate lines. If the command can be parsed without syntax errors, the transfor-
mation program built by the parser is executed by the interpreter. This pro-
gram is in reality a sequence of tokens (numbers) stored in an array called

82 BEYOND PHOTOGRAPHY CHAPTER 5

parsed []. Below, this is referred to as the parse string. For completeness,
here is also the routine getname() that is used in parse() to fetch a filename
argument (a single alphanumer ic character, or one of the tokens FNAME or
NAME with a string attribute).

getname()
{ int t = lex();

if (t != NAME && t != FNAME && !isalpha(t))
error("expected name, bad token: %d\n", t);

}

error () is the routine to be called when a syntax error is detected. It will eat
up the rest of the input, up to a newline, and set an error flag that will avoid
the interpreter from being run on erroneous input.

error(s, d)
char *s;

{
extern int lat;

fprintf(stderr, s, d);
while (lat != ’\n’)

lat = lex();
noerr = 0; /* noerr is now false */

}

Having seen the lexical analyzer and the main routine of the parser, you
already know almost everything there is to know about the wor king of popi.
We only have to fill in a few details, such as the parsing of expressions, the
execution of parse strings and the reading and writing of image files.

Grammar Rules

When the parser starts processing a transfor mation expression it expects to
see a sequence such as

new[x,y] = expression.

This sequence reaches the parser as a token NEW followed by a character [,
an expression for the x index, a comma, another expression for the y , a char-
acter =, and a final expression for the values to be assigned. As an added dif-
ficulty we will allow for certain standard parts of this sequence to be omitted.
The editor should be able to fill in the missing parts with defaults. For
instance, if the index to array new is missing, as in

new = expression

the parser may assume a default index [x , y]. If the token new is also miss-
ing, and the statement just reads

expression

the parser can assume that you meant an assignment to image array new
with the default index [x , y].

To make more precise what type of expressions are acceptable to the parser,

CHAPTER 5 DARKROOM SOFTWARE 83

we define a grammar. A transfor mation, for instance, takes one of three pos-
sible for ms, which we can describe as follows:

trans → NEW ‘[’ index ‘]’ ‘=’ expr
| NEW ‘=’ expr
| expr

This grammar rule is called a production. On the left-hand side of the arrow
we write the name of the phrase or language fragment we want to define.
Here we wrote trans, as an abbreviation of ‘‘transfor mation expression.’’ The
right-hand side shows a number of alternative ways in which the phrase can
be constructed. The alter natives are separated by ver tical bars. Quoted
characters are called literals, and names in capitals are called ter minals.
Ever ything in a production except the literals and terminals must be expanded
in still other productions, so that eventually everything can be defined recur-
sively in terms of literals and terminals only. Note that the lexical analyzer we
discussed before will recognize all the literals and terminals for us, and pass
them as tokens to the parser.

The only undefined term in the production above is expr . So we will have to
define it.

expr → term
| term ‘?’ expr ‘:’ expr

This rule says that an expression is either a conditional expression or some-
thing called a term. Note that conditional expressions can have other condi-
tionals inside, but not in the term before the question mark.

term → factor binop term

This time we have two nonter minals in the production: binop and factor . The
expansion for binop, or binar y operator, is quickly defined.

binop → ‘*’ | ‘/’ | ‘%’
| ‘+’ | ‘-’
| ‘>’ | ‘<’ | GE | LE | EQ | NE
| ‘ˆ’ | AND | OR

A factor is a little more wor k.

factor → ‘(’ expr ‘)’
| ‘-’ factor
| ‘!’ factor
| OLD
| fileref
| value
| ‘x’
| ‘y’
| factor POW factor

A factor, then, can be any expression enclosed in parentheses; it may be pre-
ceded by a single minus sign (the unary minus) or a single exclamation mark
(a boolean negation). It can be the token OLD , the characters x and y , or a
factor raised to the power of some other factor . It can also be a constant
value or a file reference fileref . This nonterminal, in turn, can be defined as

84 BEYOND PHOTOGRAPHY CHAPTER 5

follows:

fileref → FNAME
| FNAME ‘[’ index ‘]’
| ‘$’ value
| ‘$’ value ‘[’ index ’]’

$FNAME$ is the token returned by the lexical analyzer when it recognizes the
name of an open image file in the input. We allow for file references to be
either symbolic (e.g., pjw [x , y]) or numer ic (as in $1[x , y]). The correspon-
dence between names and numbers is given by the f command, discussed
ear lier. This leaves only the following nonterminals to be expanded.

value → digit | digit value
index → expr ‘,’ expr

and trivially:

digit → ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
| ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Now let’s look at the code for the parser that makes it all happen. The
parser’s job is to read the transfor mation expressions, flag syntax errors, and
build a program for the interpreter that encodes the expressions.

The treatment of the defaults requires some attention. Remember that each
image buffer takes either an explicit, user-defined index or, if the user omits it,
an implicit index [x , y]. If the index to the destination buffer new is omitted,
the parser inserts a special symbol @ into the program to tell the interpreter
to use the default index and destination, i.e., new [x , y]. The processing of
explicit or implicit indexes to image files stored in other image buffers is
deferred to a procedure named fileref ().

Here, first, is the code for routine transform(), that is called from parse() at the
star t of a transfor mation expression.

transform()
{ extern int prs;

prs = 0; /* initial length of parse string */
if (lat != NEW)
{ expr();

emit(’@’);
pushback(lat);
return;

}
lat = lex();
if (lat == ’[’)
{ fileref(CURNEW, LVAL);

expect(’=’); expr(); emit(’=’);
} else
{ expect(’=’); expr(); emit(’@’);
}

CHAPTER 5 DARKROOM SOFTWARE 85

if (lat != ’\n’ && lat != ’;’)
error("syntax error, separator\n");

pushback(lat);
}

The symbol @ is really an abstract instruction of the stack machine that runs
the transfor mations. An assignment to any other location in array new is
encoded with an explicit ‘‘instr uction’’ =. The program for the interpreter, or
the parse string as we have called it before, is built in an array called parsed .
We use a procedure emit (symbol) to add new symbols to the parse string.

emit(what)
{

if (prs >= MANY)
error("expression too long\n");

parsed[prs++] = what;
}

The parse string is in standard postfix notation, with a few special operators
such as @ and =. In postfix notation the expression new = x ∗∗ y becomes
‘x , y , POW , @.’ The operators simply follow the operands to which they
apply, instead of sitting between them. This for mat greatly simplifies the
design of the interpreter. Procedure expect (token) checks that the look-
ahead token lat matches the expected value and then reads in the next token
from the lexical analyzer.

expect(t)
{

if (lat == t)
lat = lex();

else
error("error: expected token %d\n",t);

}

fileref () is a procedure that decodes a reference to an image buffer. It has to
check that the image is really available, and it must properly decode the index.
A file reference can occur in two different contexts: on the left-hand side or the
right-hand side of an assignment. In the first case the interpreter will have to
calculate the address of the location in the destination buffer where a new
pixel value is to be stored; in the second case it simply needs to read a pixel
value from that location and can forget about its address. The parser will dis-
tinguish the two different uses by using either the symbol LVAL or RVAL in
the second argument to fileref (). As it turns out, we will only allow array new
to be used as an LVAL. Here is the code. The appropriate token value to be
issued is passed as in argument tok (see, for instance, the usage of fileref () in
the transform() routine above).

86 BEYOND PHOTOGRAPHY CHAPTER 5

fileref(val, tok)
{

if (val < 0 || val >= nsrc)
error("bad file number: %d\n", val);

emit(VALUE);
emit(val);
if (lat == ’[’)
{ lat = lex();

expr(); expect(’,’);
expr(); expect(’]’); /* [x,y] */

} else
{ emit(’x’);

emit(’y’);
}
emit(tok);

}

A value is encoded in the parse string by the symbol VALUE followed by the
actual number seen.

More about Parsing Expressions

The most important part of the parser starts with expr (). It is time to worr y
here about operator precedence rules. An expression like 512 * y + x is to be
inter preted as (512 * y) + x instead of 512 * (y + x). In postfix for m this is the
difference between parsing 512,y ,*,x ,+ and 512,y ,x ,+,*. To ensure that the
parser gives multiplications, divisions, and modulo operations a higher prior ity
than, for instance, additions or subtractions, we use a lookup table that
encodes four precedence levels.

int op[4][7] = {
{ ’*’, ’/’, ’%’, 0, 0, 0, 0, },
{ ’+’, ’-’, 0, 0, 0, 0, 0, },
{ ’>’, ’<’, GE, LE, EQ, NE, 0, },
{ ’ˆ’, AND, OR, 0, 0, 0, 0, },

};

Procedure expr () uses a generic procedure level (nr) to parse sub-expres-
sions for precedence level nr . It tries to parse the highest-precedence opera-
tors first. At the highest level it tries to find a factor () such as a number or a
variable. At the other levels it checks for the appropriate operators in the table
shown above . The lowest level is given to the operators of a conditional
expression (a question mark and a colon).

CHAPTER 5 DARKROOM SOFTWARE 87

expr()
{ extern int prs;

extern int parsed[MANY];
int remem1, remem2;

level(3);
if (lat == ’?’)
{ lat = lex();

emit(’?’);
remem1 = prs; emit(0);
expr();
expect(’:’); emit(’:’);
remem2 = prs; emit(0);
parsed[remem1] = prs-1;
expr();
parsed[remem2] = prs-1;

}
}

Conditional image transfor mation commands are built from three sub-expres-
sions:

condition?iftrue:iffalse.

If, at runtime, the condition is found to be true, the interpreter will execute the
instr uctions in array parsed for the iftrue par t. If, how ever, the condition is
found to be false, the interpreter should be able to skip to the iffalse par t. To
allow the interpreter to do this at runtime, the parser reserves a slot in the
parse string for the destination of the jump. The slot is filled with that destina-
tion after the colon has been parsed. Similar ly, after executing an iftrue par t,
the interpreter must skip to the end of the conditional. Again the proper desti-
nation can be patched into the string, but only after the end of the iffalse
expression has been seen (i.e., a semicolon or a newline).

level(nr)
{ int i;

extern int noerr;

if (nr < 0)
{ factor();

return;
}
level(nr-1);
for (i = 0; op[nr][i] != 0 && noerr; i++)

if (lat == op[nr][i])
{ lat = lex();

level(nr);
emit(op[nr][i]);
break;

}
}

A factor, finally, is defined as follows:

88 BEYOND PHOTOGRAPHY CHAPTER 5

factor()
{ int n;

switch (lat) {
case ’(’: lat = lex();

expr();
expect(’)’);
break;

case ’-’: lat = lex();
factor();
emit(UMIN);
break;

case ’!’: lat = lex();
factor();
emit(’!’);
break;

case OLD: lat = lex();
fileref(CUROLD, RVAL);
break;

case FNAME: n = lexval;
lat = lex();
fileref(n+1, RVAL);
break;

case ’$’: lat = lex();
expect(VALUE);
fileref(lexval+1, RVAL);
break;

case VALUE: emit(VALUE);
emit(lexval);
lat = lex();
break;

case ’y’:
case ’x’: emit(lat);

lat = lex();
break;

default : error("expr: syntax error\n");
}
if (lat == POW)
{ lat = lex();

factor();
emit(POW);

}
}

In the order listed, a factor can be an expression enclosed in parentheses, a
factor preceded by a minus sign (unary minus), or a logical negation. It can
also be a symbolic or a numer ic file reference, a value, a Car tesian coordi-
nate, or a factor raised to some other factor with a power operator.

So far, we have discussed the lexical analyzer and the parser. The interpreter
and the file handler remain to be discussed. Before we discuss the file han-
dler, first a few words about the specific data structures that are used for stor-
ing the images.

CHAPTER 5 DARKROOM SOFTWARE 89

Data Structure

Images are stored in a structure of the following type:

struct SRC {
char *str; /* file name */
unsigned char **pix; /* pixel values */

} src[];

The for mat is one byte per pixel, DEF _X pixels per scanline, and DEF _Y
scanlines per image. We will use two of these structures as edit buffers:
src [0] and src [1] with DEF _Y ×DEF _X pixels. The result of the last edit oper-
ation is in one of these two arrays and is referred to as old . Inter nally, it is
addressed as src [CUROLD]. pix . Similar ly, the destination of an edit opera-
tion is in the other edit buffer named new , or src [CURNEW]. pix .

The default image resolution is defined by two constants:

#define DEF_X 248
#define DEF_Y 248

What follows is an aside on the choice of the resolution, which you can skip
on a first reading:

The precise value you can afford to enter for DEF _X and DEF _Y depends
on the amount of memory in your computer and the type of memory alloca-
tion perfor med. On most systems, an image size of 248×248 will allow for a
generous number of image files to be open for editing simultaneously.
Smaller computers, that is, computers with a wordsize of 16 instead of 32 or
64 bits, can make it hard to allocate more than 216 = 64k bytes at a time.
We therefore chose to allocate memory for the images in increments of
DEF _X , once for each scanline, instead of once for each picture.

A few more hairy details. An allocator sometimes uses a few bytes from
each block allocated for its own housekeeping. On a small system, this
makes it attractive to pick a value for DEF _X that is the same number of
bytes smaller than a power of 2 so that we can evenly fill up available mem-
or y, without leaving gaps. (The amount of real memory available comes in
powers of 2.) In this case we chose 256 − 8 = 248, which turns out to be an
good size for an AT&T PC6300+ system running UNIX. On a larger system
you need not worr y about memory allocation details and just select any
frame size that is convenient to wor k with.

File Handler

We need routines to read and write image files, and to show which files are
currently open. The last one is easy:

90 BEYOND PHOTOGRAPHY CHAPTER 5

showfiles()
{ int n;

if (nsrc == 2)
printf("no files open\n");

else
for (n = 2; n < nsrc; n++)

printf("$%d = %s\n", n-1, src[n].str);
}

It uses printf () again, this time with two extra arguments: a number to be
pr inted at the place indicated with %d and a name to be printed at the %s.

Reading new files, including the required memory allocation, can be done as
follows, using the standard I/O routines fopen(), fread (), and fclose(). A call to
fopen(str , "r ") opens the file named str for reading. Similarly fopen(str , "w ")
opens the file for writing, and creates it if it does not exist. fread (ptr , n, m, fd)
reads m chunks of n bytes from the file referred to by file descriptor fd and
places it at the location given by ptr .

getpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "r")) == NULL)
{ fprintf(stderr, "no file %s\n", str);

return;
}

if (into->pix == (unsigned char **) 0)
{ into->pix = (unsigned char **)

Emalloc(DEF_Y * sizeof(unsigned char *));
for (i = 0; i < DEF_Y; i++)

into->pix[i] = (unsigned char *)
Emalloc(DEF_X);

}
into->str = (char *) Emalloc(strlen(str)+1);
if (!noerr) return; /* set by Emalloc */

for (i = 0; i < DEF_Y; i++)
fread(into->pix[i], 1, DEF_X, fd);

strcpy(into->str, str);

fclose(fd);
nsrc++;

}

A separate procedure is used to access the memory allocator, to make it eas-
ier to catch errors:

CHAPTER 5 DARKROOM SOFTWARE 91

char *
Emalloc(N)
{ char *try, *malloc();

if ((try = malloc(N)) == NULL)
error("out of memory\n");

return try;
}

Wr iting files is also simple. fwrite(ptr , n, m, fd) writes m chunks of data, of n
bytes each, from a location pointed to by ptr into the file with descriptor fd .

putpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "w")) == NULL)
{ fprintf(stderr, "cannot create %s\n", str);

return;
}
for (i = 0; i < DEF_Y; i++)

fwrite(into->pix[i], 1, DEF_X, fd);
fclose(fd);

}

The Interpreter

The interpreter is a sensitive piece of code since it is asked to execute the
parse string once for every pixel in the image being edited. Even for a small
image size of 248×248 pixels the interpreter must run through the parse string
61,504 times. It is impor tant that it is as fast as it can be.

The interpreter is built as a stack machine. It maintains a pointer rr to a stack
of values. Values and var iables are pushed onto the stack. Operators and
functions pop the stack and replace the values at the top with their result. At
the end of each run of the interpreter that stack should be empty. The runtime
stack contains long values instead of integers to allow for the computation of
both pixel values and pixel addresses.

For convenience we define a macro dop(OP) for the frequently occurring
operation that pops two values from the stack, applies an operation OP to
them, and then pushes the result back.

#define dop(OP) a = *--rr; tr = rr-1; *tr = (*tr OP (long)a)

Variable rr points to the first free slot on the stack. The topmost symbol on
the stack is at position (rr − 1). The dop macro can be used for all binary
ar ithmetic and boolean operations. The interpreter will keep a pointer to the
default destination of pixel assignments up to date in a pointer p.

92 BEYOND PHOTOGRAPHY CHAPTER 5

run()
{ long R[MANY]; /* the stack */

register long *rr, *tr; /* top of stack */
register unsigned char *u; /* explicit destination */
register unsigned char *p; /* default destination */
register int k; /* indexes parse string */
int a, b, c; /* scratch */
int x, y; /* coordinates */

p = src[CURNEW].pix[0];
for (y = 0; y < DEF_Y; y++, p = src[CURNEW].pix[y])
for (x = 0; x < DEF_X; x++, p++)
for (k = 0, rr = R; k < prs; k++)
{ if (parsed[k] == VALUE)

{ *rr++ = (long)parsed[++k];
continue;

}
if (parsed[k] == ’@’)
{ *p = (unsigned char) (*--rr);

continue;
}
switch (parsed[k]) {
case ’+’: dop(+); break;
case ’-’: dop(-); break;
case ’*’: dop(*); break;
case ’/’: dop(/); break;
case ’%’: dop(%); break;
case ’>’: dop(>); break;
case ’<’: dop(<); break;
case GE: dop(>=); break;
case LE: dop(<=); break;
case EQ: dop(==); break;
case NE: dop(!=); break;
case AND: dop(&&); break;
case OR: dop(||); break;
case ’ˆ’: dop(|); break;
case ’x’: *rr++ = (long)x; break;
case ’y’: *rr++ = (long)y; break;
case UMIN: tr = rr-1; *tr = -(*tr); break;
case ’!’: tr = rr-1; *tr = !(*tr); break;
case ’=’: a = *--rr;

u = (unsigned char *) *--rr;
*u = (unsigned char) a;
break;

case RVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) src[c].pix[a][b];
break;

CHAPTER 5 DARKROOM SOFTWARE 93

case LVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) &(src[c].pix[a][b]);
break;

case POW: a = *--rr;
(rr-1) = Pow((rr-1),(long)a);
break;

case ’?’: a = *--rr; k++;
if (!a) k = parsed[k];
break;

case ’:’: k = parsed[k+1]; break;

default : error("run: unknown operator\n");
}

}
CUROLD = CURNEW; CURNEW = 1-CUROLD;

}

It may look curious that two of the "instructions" are processed before the
large case switch is entered. They catch the two most frequently executed
operations and it makes the interpreter run faster to process them first. At the
end of the run the two edit buffers, referred to by old and new , are swapped.
Note that the procedure Pow () accepts and returns long values. To make use
of the C librar y routine, you can define

long
Pow(a, b)

long a, b;
{ double c = (double)a;

double d = (double)b;
return (long) pow(c, d);

}

The Complete Program

Here, finally, is the complete listing of the program, with all loose ends neatly
tied up. On a UNIX system it is compiled with the command

cc -o popi main.c lex.c io.c expr.c run.c

If display is the name of a display routine that can show an unfor matted
image file on the specific monitor you use, you can test the wor king of the edi-
tor with the commands.

$ popi invoke the editor
-> xˆy create a test pattern
-> w test wr ite it in a file
-> q quit the editor
$ display test display the result

Tr y it. You’ll like it.

94 BEYOND PHOTOGRAPHY CHAPTER 5

/*** popi.h (header file) **************************/

#define MANY 128
#define DEF_X 248 /* image width */
#define DEF_Y 248 /* image height */

#define RVAL 257 /* larger than any char token */
#define LVAL 258
#define FNAME 259
#define VALUE 260
#define NAME 261
#define NEW 262
#define OLD 263
#define AND 264
#define OR 265
#define EQ 266
#define NE 267
#define GE 268
#define LE 269
#define UMIN 270
#define POW 271

struct SRC {
unsigned char **pix; /* pix[y][x] */
char *str;

};

/*** main.c **/

#include <stdio.h>
#include <ctype.h>
#include "popi.h"

int parsed[MANY];
struct SRC src[MANY];
short CUROLD=0, CURNEW=1;
int noerr, lexval, prs=0, nsrc=2;
char text[256];

char *Emalloc();

main(argc, argv)
char **argv;

{
int i;

src[CUROLD].pix = (unsigned char **)
Emalloc(DEF_Y * sizeof(unsigned char *));

src[CURNEW].pix = (unsigned char **)
Emalloc(DEF_Y * sizeof(unsigned char *));

CHAPTER 5 DARKROOM SOFTWARE 95

for (i = 0; i < DEF_Y; i++)
{ src[CUROLD].pix[i] = (unsigned char *)

Emalloc(DEF_X);
src[CURNEW].pix[i] = (unsigned char *)

Emalloc(DEF_X);
}

for (i = 1; i < argc; i++)
getpix(&src[nsrc], argv[i]);

do noerr=1; while(parse());
}

parse()
{ extern int lat; /* look ahead token */

printf("-> ");
while (noerr)
{ switch (lat = lex()) {

case ’q’: return 0;
case ’\n’: return 1;
case ’;’: break;
case ’f’: showfiles();

break;
case ’r’: getname();

if (!noerr) continue;
getpix(&src[nsrc], text);
break;

case ’w’: getname();
if (!noerr) continue;
putpix(&src[CUROLD], text);
break;

default : transform();
if (noerr) run();
break;

} }
}

getname()
{ int t = lex();

if (t != NAME && t != FNAME && !isalpha(t))
error("expected name, bad token: %d\n", t);

}

emit(what)
{

if (prs >= MANY)
error("expression too long\n");

parsed[prs++] = what;
}

96 BEYOND PHOTOGRAPHY CHAPTER 5

error(s, d)
char *s;

{
extern int lat;

fprintf(stderr, s, d);
while (lat != ’\n’)

lat = lex();
noerr = 0; /* noerr is now false */

}

char *
Emalloc(N)
{ char *try, *malloc();

if ((try = malloc(N)) == NULL)
error("out of memory\n");

return try;
}

/*** lex.c (lexical analyzer) *********************/

#include <stdio.h>
#include <ctype.h>
#include "popi.h"

extern struct SRC src[MANY];
extern short CUROLD, CURNEW;
extern int nsrc, lexval;
extern char text[];

lex()
{ int c;

do /* ignore white space */
c = getchar();

while (c == ’ ’ || c == ’\t’);

if (isdigit(c))
c = getnumber(c);

else if (isalpha(c) || c == ’_’)
c = getstring(c);

CHAPTER 5 DARKROOM SOFTWARE 97

switch (c) {
case EOF: c = ’q’; break;
case ’*’: c = follow(’*’, POW, c); break;
case ’>’: c = follow(’=’, GE, c); break;
case ’<’: c = follow(’=’, LE, c); break;
case ’!’: c = follow(’=’, NE, c); break;
case ’=’: c = follow(’=’, EQ, c); break;
case ’|’: c = follow(’|’, OR, c); break;
case ’&’: c = follow(’&’, AND, c); break;
case ’Z’: c = VALUE; lexval = 255; break;
case ’Y’: c = VALUE; lexval = DEF_Y-1; break;
case ’X’: c = VALUE; lexval = DEF_X-1; break;
default : break;
}
return c;

}

getnumber(first)
{ int c;

lexval = first - ’0’;
while (isdigit(c = getchar()))

lexval = 10*lexval + c - ’0’;
pushback(c);
return VALUE;

}

getstring(first)
{ int c = first;

char *str = text;

do {
*str++ = c;
c = getchar();

} while (isalpha(c) || c == ’_’ || isdigit(c));
*str = ’\0’;
pushback(c);

if (strcmp(text, "new") == 0) return NEW;
if (strcmp(text, "old") == 0) return OLD;

for (c = 2; c < nsrc; c++)
if (strcmp(src[c].str, text) == 0)
{ lexval = c-1;

return FNAME;
}

if (strlen(text) > 1)
return NAME;

return first;
}

98 BEYOND PHOTOGRAPHY CHAPTER 5

follow(tok, ifyes, ifno)
{ int c;

if ((c = getchar()) == tok)
return ifyes;

pushback(c);

return ifno;
}

pushback(c)
{

ungetc(c, stdin);
}

/*** io.c (file handler) ************************/

#include <stdio.h>
#include "popi.h"

extern struct SRC src[MANY];
extern int nsrc, noerr;
extern char *Emalloc();

getpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "r")) == NULL)
{ fprintf(stderr, "no file %s\n", str);

return;
}

if (into->pix == (unsigned char **) 0)
{ into->pix = (unsigned char **)

Emalloc(DEF_Y * sizeof(unsigned char *));
for (i = 0; i < DEF_Y; i++)

into->pix[i] = (unsigned char *)
Emalloc(DEF_X);

}
into->str = (char *) Emalloc(strlen(str)+1);
if (!noerr) return; /* set by Emalloc */

for (i = 0; i < DEF_Y; i++)
fread(into->pix[i], 1, DEF_X, fd);

strcpy(into->str, str);

fclose(fd);
nsrc++;

}

CHAPTER 5 DARKROOM SOFTWARE 99

putpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "w")) == NULL)
{ fprintf(stderr, "cannot create %s\n", str);

return;
}
for (i = 0; i < DEF_Y; i++)

fwrite(into->pix[i], 1, DEF_X, fd);
fclose(fd);

}

showfiles()
{ int n;

if (nsrc == 2)
printf("no files open\n");

else
for (n = 2; n < nsrc; n++)

printf("$%d = %s\n", n-1, src[n].str);
}

/*** expr.c (parser) ******************************/

#include "popi.h"

extern int lexval, nsrc;
extern struct SRC src[MANY];
extern short CUROLD, CURNEW;
int lat; /* look ahead token */

int op[4][7] = {
{ ’*’, ’/’, ’%’, 0, 0, 0, 0, },
{ ’+’, ’-’, 0, 0, 0, 0, 0, },
{ ’>’, ’<’, GE, LE, EQ, NE, 0, },
{ ’ˆ’, AND, OR, 0, 0, 0, 0, },

};

100 BEYOND PHOTOGRAPHY CHAPTER 5

expr()
{ extern int prs;

extern int parsed[MANY];
int remem1, remem2;

level(3);
if (lat == ’?’)
{ lat = lex();

emit(’?’);
remem1 = prs; emit(0);
expr();
expect(’:’); emit(’:’);
remem2 = prs; emit(0);
parsed[remem1] = prs-1;
expr();
parsed[remem2] = prs-1;

}
}

level(nr)
{ int i;

extern int noerr;

if (nr < 0)
{ factor();

return;
}
level(nr-1);
for (i = 0; op[nr][i] != 0 && noerr; i++)

if (lat == op[nr][i])
{ lat = lex();

level(nr);
emit(op[nr][i]);
break;

}
}

transform()
{ extern int prs;

prs = 0; /* initial length of parse string */
if (lat != NEW)
{ expr();

emit(’@’);
pushback(lat);
return;

}

CHAPTER 5 DARKROOM SOFTWARE 101

lat = lex();
if (lat == ’[’)
{ fileref(CURNEW, LVAL);

expect(’=’); expr(); emit(’=’);
} else
{ expect(’=’); expr(); emit(’@’);
}
if (lat != ’\n’ && lat != ’;’)

error("syntax error, separator\n");
pushback(lat);

}

factor()
{ int n;

switch (lat) {
case ’(’: lat = lex();

expr();
expect(’)’);
break;

case ’-’: lat = lex();
factor();
emit(UMIN);
break;

case ’!’: lat = lex();
factor();
emit(’!’);
break;

case OLD: lat = lex();
fileref(CUROLD, RVAL);
break;

case FNAME: n = lexval;
lat = lex();
fileref(n+1, RVAL);
break;

case ’$’: lat = lex();
expect(VALUE);
fileref(lexval+1, RVAL);
break;

case VALUE: emit(VALUE);
emit(lexval);
lat = lex();
break;

case ’y’:
case ’x’: emit(lat);

lat = lex();
break;

default : error("expr: syntax error\n");
}

102 BEYOND PHOTOGRAPHY CHAPTER 5

if (lat == POW)
{ lat = lex();

factor();
emit(POW);

}
}

fileref(val, tok)
{

if (val < 0 || val >= nsrc)
error("bad file number: %d\n", val);

emit(VALUE);
emit(val);
if (lat == ’[’)
{ lat = lex();

expr(); expect(’,’);
expr(); expect(’]’); /* [x,y] */

} else
{ emit(’x’);

emit(’y’);
}
emit(tok);

}

expect(t)
{

if (lat == t)
lat = lex();

else
error("error: expected token %d\n",t);

}

/*** run.c (interpreter) **************************/

#include "popi.h"

extern int prs, parsed[MANY];
extern struct SRC src[MANY];
extern short CUROLD, CURNEW;

#define dop(OP) a = *--rr; tr = rr-1; *tr = (*tr OP (long)a)

long
Pow(a, b)

long a, b;
{

double c = (double)a;
double d = (double)b;
double pow();

return (long) pow(c, d);
}

CHAPTER 5 DARKROOM SOFTWARE 103

run()
{ long R[MANY]; /* the stack */

register long *rr, *tr; /* top of stack */
register unsigned char *u; /* explicit destination */
register unsigned char *p; /* default destination */
register int k; /* indexes parse string */
int a, b, c; /* scratch */
int x, y; /* coordinates */

p = src[CURNEW].pix[0];
for (y = 0; y < DEF_Y; y++, p = src[CURNEW].pix[y])
for (x = 0; x < DEF_X; x++, p++)
for (k = 0, rr = R; k < prs; k++)
{ if (parsed[k] == VALUE)

{ *rr++ = (long)parsed[++k];
continue;

}
if (parsed[k] == ’@’)
{ *p = (unsigned char) (*--rr);

continue;
}
switch (parsed[k]) {
case ’+’: dop(+); break;
case ’-’: dop(-); break;
case ’*’: dop(*); break;
case ’/’: dop(/); break;
case ’%’: dop(%); break;
case ’>’: dop(>); break;
case ’<’: dop(<); break;
case GE: dop(>=); break;
case LE: dop(<=); break;
case EQ: dop(==); break;
case NE: dop(!=); break;
case AND: dop(&&); break;
case OR: dop(||); break;
case ’ˆ’: dop(|); break;
case ’x’: *rr++ = (long)x; break;
case ’y’: *rr++ = (long)y; break;
case UMIN: tr = rr-1; *tr = -(*tr); break;
case ’!’: tr = rr-1; *tr = !(*tr); break;
case ’=’: a = *--rr;

u = (unsigned char *) *--rr;
*u = (unsigned char) a;
break;

case RVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) src[c].pix[a][b];
break;

104 BEYOND PHOTOGRAPHY CHAPTER 5

case LVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) &(src[c].pix[a][b]);
break;

case POW: a = *--rr;
(rr-1) = Pow((rr-1),(long)a);
break;

case ’?’: a = *--rr; k++;
if (!a) k = parsed[k];
break;

case ’:’: k = parsed[k+1]; break;

default : error("run: unknown operator\n");
}

}
CUROLD = CURNEW; CURNEW = 1-CUROLD;

}

Librar y Routines

Here is an overview of the librar y routines that were used in the program. It
should not be hard to find equivalents for them if you run on a system other
than UNIX. They are all considered standard routines in the C programming
language.

fclose fread isalpha pow strcpy
fopen fwrite isdigit pr intf str len
fpr intf getchar malloc strcmp ungetc

Efficiency Considerations

The complete program listed above is only about 500 lines of C text. Yet it
can be an amazingly powerful package once you get the hang of the notation
for transfor mation expressions. I have run it under a UNIX operating system
on an AT&T PC6300+, a DEC VAX/750, a DEC VAX/785, and a CRAY/XMP
computer. Not to worr y, the difference in perfor mance for the software is not
near ly as spectacular as the difference in price of this hardware. Here is a
compar ison of runtimes for a few transfor mations. All times given are in sec-
onds.

Runtimes (frame size: 248×248 pixels)

Tr ansfor mation PC6300+ VAX/750 VAX/785 CRAY/XMP
new=128 7.2 4.1 1.6 0.1
new=pjw 24.2 10.5 3.7 0.4
new=Z-old 32.4 15.1 5.2 0.6
new=(pjw+rob)/2 59.2 25.9 9.7 1.0
new=(x<X/2)?pjw:rob 63.1 33.2 13.9 1.4
new=(pjw<128)?Z-pjw:pjw[X-x,y] 79.3 38.6 14.8 1.6

The times quoted are for the program as listed, with interpreted code. Since

CHAPTER 5 DARKROOM SOFTWARE 105

the interpreter runs the same code many thousands of times, even for a single
image transfor mation, ev ery improvement in that portion of the code pays off
immediately. One way to achieve a substantial speedup is to replace the
inter preter with an on-the-fly compiler that translates the transfor mation pro-
gram into machine code and runs it. It will go too far to get into the details of
that extension, but suffice it to say that it is wor th the effor t. The speed differ-
ence between interpreted code and compiled code can be as high as 1:100
for nontr ivial transfor mations. The program popi you see above is a predeces-
sor of the image editor called pico. Pico has the same basic structure as
popi, but has the built-in compiler to make it faster. The compiler extension
more than doubles the size of the program, but in a way it can achieve the
same as the purchase of a Cray supercomputer. (The perfor mance of running
pico with compiled code on a Cray is of course utterly decadent.)

Adding a Display Routine

To display an image on your terminal screen requires code that is hardware
dependent, so I have not included it in popi, but you can easily extend the
software in this way. If you have a one-byte-per-pixel monitor, you can write
the pixel values to the screen without processing.

display(pix)
unsigned char **pix;

{
register int x, y;

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)

putdot(pix[y][x], x, y);
}

The device-dependent routine putdot (val , x , y) should write a pixel with
br ightness val at location x , y on the screen. Note, how ever, that most dis-
play monitors will wor k substantially faster if you can write one scanline at a
time, using, for example:

for (y = 0; y < DEF_Y; y++)
putline(pix[y], y);

Some display monitors use a different type of coordinate system, e.g., with Y
at the top of the screen and 0 at the bottom. You can use the same routine,
and simply subtract the y variable from Y to produce a picture that is right
side up:

for (y = 0; y < DEF_Y; y++)
putline(pix[y], DEF_Y-1-y);

If you have a one-bit-per-pixel dot-mapped monitor, the image has to be
halftoned before it can be displayed. Here is a routine that you can use. It
uses a standard halftoning method, like the ones used for printing photos in
newspapers, to map gray values onto pure black-and-white values. (For more
infor mation on halftoning methods, refer to the bibliography at the end of this
chapter.)

106 BEYOND PHOTOGRAPHY CHAPTER 5

#define RES 8

thresh[RES][RES] = {
{ 0, 128, 32, 160, 8, 136, 40, 168, },
{192, 64, 224, 96, 200, 72, 232, 104, },
{ 48, 176, 16, 144, 56, 184, 24, 152, },
{240, 112, 208, 80, 248, 120, 216, 88, },
{ 12, 140, 44, 172, 4, 132, 36, 164, },
{204, 76, 236, 108, 196, 68, 228, 100, },
{ 60, 188, 28, 156, 52, 180, 20, 148, },
{252, 124, 220, 92, 244, 116, 212, 84, },

}; /* an array with threshold values */

display(pix)
unsigned char **pix;

{
register int x, y;

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)
{ if (pix[y][x] >= thresh[y%RES][x%RES])

putdot(1, x, y);
else

putdot(0, x, y);
}

}

Note again that it may be faster first to assemble a whole scanline of one bit
dots in memory and write it to the screen with a single procedure call put-
line().

Including the display routine in the editor is done in three steps. First, extend
the lexical analyzer to recognize a new keyword, such as display , and return a
new token, e.g., DISP . Then add a value for the new token to the header file
‘‘popi.h,’’ e.g.,

#define DISP 272

Finally, extend the routine parse() to respond to the new command, by adding
another case to the switch statement. For instance,

case DISP: display(src[CUROLD].pix); break;

If you are more daring, you want to consider including routine putline() directly
inside run(). The best place to do this is at the end of the loop on var iable y .
The extra procedure call makes the program run a little slower. Being able to
see the effect of a transfor mation happen in real-time, how ever, will more than
make up for it.

In a similar way popi can be extended with any number of user-defined rou-
tines, either standard transfor mations that you would like to have predefined,
or transfor mations that may be hard to express in the language of the transfor-
mation expressions. In Chapter 6 we include some examples of routines you
may want to add in this manner.

CHAPTER 5 DARKROOM SOFTWARE 107

Hints for Other Extensions

One of the first things you may want to do is to extend popi to handle both
color and black-and-white images. One simple way to do this is to store pixel
values not in 8-bit bytes but in 32-bit words (for instance, a long integer). You
will need 8 bits each for the red, green, and blue color components, and use
the remaining 8 bits to separate the color components within the pixel word.
You will have to be careful to get the image arithmetic to wor k right, especially
to avoid overflow between neighboring color components. But it is not too
hard to do. Another method is, of course, to store the red, green, and blue
components in three separate image files and use the editor as is.

The extension for polar coordinates (Chapter 3) is relatively easy. The sim-
plest method is to prepare two files with precomputed values of all r and a
values. The editor loads the two files in memory, as if they were image files,
and simply looks up each r and a value as needed, instead of computing
them over and over on-the-fly. You will need to add two lines to the parsing
routine factor (), to catch r and a in the same case statement that processes x
and y . Then you will have to add a modest amount of code to the interpreter
routine run() to look up the precomputed value for either r or a, given x and
y . The code for RVAL in run() can serve as an example.

Tr igonometr ic functions are also relatively easy to add. The lexical analyzer
will need to recognize a few more character sequences, such as sin, cos, and
atan. They can be translated into three new tokens and interpreted by run()
similar to the token POW . Note, how ever, that the sin and cos functions
retur n values between +1.0 and −1.0, while the editor wor ks only with inte-
gers. A simple way around this is to have these functions return 1000 times
their value, and to renormalize the results in the transfor mation expressions.

Adding an undo operation takes only one line of code, to be added to the
case switch in routine parse() in main.c.

case ’u’: CUROLD = CURNEW; CURNEW = 1-CUROLD; break;

Those who really want to exper iment will also want to consider the extension
of popi with var iables, interactively defined functions, and explicit control flow
statements. Each such extension will increase both the power and the size of
the editor. But be war ned: If you are not a skilled programmer when you
begin with these extensions, you probably will be when you complete them.

Books

A couple of books may be helpful if you would like to wor k with the software
discussed above . The best reference to the C programming language is still
Kernighan and Ritchie’s manual from 1978. A discussion of the draft ANSI
standard C language can be found in Harbison and Steele’s book. Much
more about the design of parsers and lexical analyzer can be found in the
famous dragon books by Aho and others. A wealth of infor mation on C pro-
gramming can also be found in Ker nighan and Pike’s book on UNIX. Read
especially Chapter 8 on program dev elopment if you consider extending popi.

108 BEYOND PHOTOGRAPHY CHAPTER 5

An excellent introduction to digital halftoning methods can be found in Robert
Ulichney’s book.

For completeness the list below also includes a reference to a paper pub-
lished in the AT&T Technical Journal with more infor mation on the structure of
the picture editor pico, popi’s bigger brother.

The C Programming Language, Brian W. Ker nighan and Dennis M. Ritchie,
Prentice Hall, 1978, 2nd revised edition 1988, ISBN 0-13-110163-3.

C − A Reference Manual, Samual P. Harbison and Guy L. Steele Jr., Prentice-
Hall, 2nd edition, 1987, ISBN 0-13-109802-0.

Compilers − Principles, Techniques and Tools, Al Aho, Ravi Sethi, and Jeff
Ullman. Addison-Wesley, 1986, ISBN 0-201-10088-6.

The UNIX Programming Environment, Brian W. Ker nighan and Rob Pike,
Prentice-Hall, 1984, ISBN 0-13-937699-2.

Digital Halftoning, Rober t Ulichney, The MIT Press, 1987, ISBN
0-262-21009-6.

‘‘Pico − a Picture Editor,’ ’ Gerard J. Holzmann, AT&T Technical Journal, Vol.
66, No. 2, 1987, pp. 2–13.

